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Description
Technical Field

[0001] The present disclosure relates to methods of encoding input data to generate corresponding encoded data.
Moreover, the present disclosure also relates to methods of decoding aforesaid encoded data to generate corresponding
decoded output data. Furthermore, the present disclosure also relates to encoders and decoders which are operable to
implement aforesaid methods. Additionally, the present disclosure relates to computer program products comprising a
non-transitory computer-readable storage medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising processing hardware for executing afore-
mentioned methods.

Background

[0002] In overview, as illustrated in FIG. 1, known encoding methods of encoding input data D1 to generate corre-
sponding encoded output data E2 involve applying one or more transformations T to the input data D1 to generate
corresponding transformed encoded output data E2, wherein the transformed encoded output data E2 has associated
therewith coding table data C information which is indicative of one or more coding tables defining the one or more
transformations T employed. The encoded transformed data E2 and the coding table data C information, namely col-
lectively the encoded output data E2, are often communicated via a data carrier and/or via a data communication network
to one or more decoders which are operable to apply one or more inverse transformations T-1 to decode the encoded
output data E2 to generate corresponding decoded data D3. It is often desirable that the encoded output data E2 is
compressed relative to the input data D1, for example to reduce communication network capacity load when communi-
cating the encoded output data E2. Moreover, it is also desirable that the encoded output data E2 is compressed in a
substantially lossless manner, so that the decoded data D3 is an accurate reproduction of information included in the
input data D1. Data compression achievable in the encoded output data E2 relative to the input data D1 is potentially
inefficient when the coding table data C information is significant in size relative to the encoded transformed data E2,
namely the coding table data C information corresponds to a significant data overhead in the transformed encoded data
E2.

[0003] There are several known methods of encoding the input data D1 to generate the encoded output data E2. For
example, known Huffman encoding or other VLC encoding methods are often employed to compress various types of
data. Moreover, Arithmetic coding, or Range coding, are becoming increasingly popular for compressing input data, but
are quite inefficient in situations where:

(i) a frequency table for the input data D1 is not already known by an encoder which is operable to encode the input
data D1 to generate corresponding encoded output data E2, and by a decoder which is operable to decode the
encoded output data E2; and

(ii) the amount of input data is relatively small, for example in a situation where the input data D1 is being commu-
nicated in small data segments or data chunks, wherein each data segment or data chunk is accompanied by a
corresponding frequency table.

[0004] As aforesaid, such inefficiency arises due to delivery of one or more frequency tables consuming considerable
data space, if it cannot be selected using relatively few identification parameters from a list of possible frequency tables,
for example which the decoder has stored locally thereat. Moreover, it is also less probable to find suitable frequency
tables than suitable code tables from such a list. Often, the input data D1 to be encoded can also vary locally, for example
it is transformed during transmission through a communication network to conform to spatially local data standards for
the communication network.

[0005] There are known methods available for delivering code tables or frequency tables in association with commu-
nicating encoded data content derived from symbols. Most of the known methods employ a direct delivery of a Huffman
tree or frequencies of the symbols. Such known methods are not so satisfactory, because they require considerable
information to be delivered from an encoder to a corresponding decoder. Moreover, there are also known methods of
delivering lengths of code table symbols, for example as employed in a known Intel IPP-library, which has been con-
temporarily deprecated; there is employed a method of compressing a code table, namely by way of "HuffLenCodeTa-
blePacK’, and decoding it back again, namely by way of "HuffLenCodeTableUnpack"; however, this method is not
satisfactory and sometimes even increases the size of data during encoding processes. Moreover, the method also
requires that there are 256 symbols, and all the symbols from 0 to 255 have a non-zero length for their code words.
Methods that deliver code tables are still clearly amongst most efficient delivery mechanisms that are currently available
for prefix codes that are generated, for example by Huffman encoding techniques. When a Huffman tree is delivered
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from an encoder to a corresponding decoder, generated code symbols from the encoder are always similar in the encoder
and in the decoder. When only a frequency table is delivered, there then has to be similar algorithms used in an encoder
and in a decoder for actual Huffman tree generation from the frequency table to be achieved, if the Huffman tree is
needed, to enable decoding of the symbols in a proper manner at the decoder. If the lengths of code table symbols are
delivered, then similar methods from lengths of symbol-to-frequency-table transformation are also needed in the encoder
and in the decoder to enable decoding of the symbols in a proper manner. Communicating lengths of symbols from the
encoder to the decoder is not a practical method of delivering frequencies for Arithmetic coding and Range coding,
because they are designed to support more accurate frequency tables than merely enabled by communicating the
lengths of code symbols. Lengths of code symbols can also be used in Arithmetic coding and Range coding. However,
these methods do not offer benefits compared to Huffman Coding for example, if no adaptive update of tables is executed
later for future data. Delivery of information which is indicative of probabilities offers usually more optimal coding results
with Range coding or Arithmetic coding in contradistinction to Huffman coding. The probabilities of the symbols can be
calculated by dividing frequencies of occurrence of the symbols by a sum of the symbol frequencies of occurrence,
namely = number of symbols. A delivery of such probabilities is beneficially made by using scaled probability values.
Scaled probability values can be calculated by multiplying original symbol probability values with an integer number that
is advantageously a power of two value, namely 2" wherein n is an integer, and by then rounding it to a nearest integer
value. The sum of these scaled probabilities as integer numbers is equalized to be the same as the multiplier value. An
escape code symbol is also beneficially created for symbols that otherwise are not allocated their own non-zero scaled
probability value. This means that those symbols that need an escape code have a probability that is smaller than what
can be presented with the selected multiplier value. It is also possible to create scaled probabilities without employing
an escape code with two different mechanisms. The multiplier value can be increased and then the new probability
values can be calculated. It is also possible to upgrade those scaled probability values for available symbols that are
equal to zero to be equal to one. This probability value upgrade requires that the increase of the probability values are
compensated by decreasing the probability values of the other symbols. Thisis done so as to make the sum of probabilities
exactly the same as the multiplier value. This procedure makes the probability values not as well optimized as could be
possible, but escape symbols are not needed, and in some cases it might be still the optimal coding solution. Lengths
of symbols or probability values define rough estimate of frequency table that can be used for methods that employ
variable length coding symbols, for example Huffman coding, Range coding, Arithmetic coding and any other variable
length coding methods. It will be appreciated that the scaled probability table can directly be used as the rough estimate
of symbol frequencies when they are needed, and lengths of symbols need to be first converted to the rough estimate
of symbol frequencies before the utilization. The conversion from length of symbols to frequency table will be shown
later during the data encoding and table delivery.

[0006] Many known practical methods of encoding data do not utilize optimized code tables at all, namely they utilize
fixed code tables for encoding data to generate corresponding encoded data, and fixed code tables for subsequently
decoding the encoded data. Sometimes tables are updated with adaptive methods based on the delivered symbols. In
certain known methods, there are sometimes utilized a couple of different code tables, alternatively frequency tables,
for encoding data in an encoder and correspondingly decoding the encoded data in a decoder, wherein an index defining
a selected code table, probability table, or frequency table, is delivered as information from the encoder to the decoder.
In certain methods, there are employed separate tables for luminance and color channels, for inter- and intra- blocks,
or for different kinds of data; however, the separate tables are communicated in an inefficient manner; for example,
reference is herewith made to a following Internet web-site (Wikipedia): http://en.wikipedia.org/wiki/Huffman_coding.
During decompression, using Huffman-based methods, a Huffman tree must be reconstructed. In a simplest case, where
character frequencies are relatively predictable, the tree is susceptible to being reconstructed, and even statistically
adjusted on each compression cycle, and thus reused every time, at an expense of at least some measure of compression
efficiency; alternatively, Huffman-tree information must be sent a priori, namely, beforehand.

[0007] A simple approach of prepending frequency counts relating to symbols that are coded into an output stream
of compressed data has a major disadvantage of increasing a data volume in the compressed data by at least several
kiloBytes (kB) in practice, so such a simple approach has little practical use. If the data is compressed using canonical
encoding, the compression model can be precisely reconstructed with just B2B bits of information, wherein B is the
number of bits per symbol, for example, with 8 bits it requires 2kB.

[0008] Another method is simply to prepend the Huffman tree, bit by bit, to the compressed output stream. For example,
assuming that the value of O represents a parent node and 1 a leaf node, whenever the latter is encountered, a tree-
building routine simply reads a next 8 bits to determine a character value of that particular leaf. Such a process continues
recursively until a last leaf node is reached; at that point, the Huffman tree will thus be faithfully reconstructed, for example
at a decoder. A data overhead arising from using such a method ranges from roughly 2 to 320 bytes, assuming an 8-
bit alphabet.

[0009] In order to elucidate further known methods of encoding data and corresponding methods of decoding encoded
data, Huffman decoding will next be described in overview. It will be appreciated that any other methods, for example
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Range decoding or Arithmetic decoding, can also be utilized instead of Huffman decoding. Before commencing com-
pression of a data file, a compressor, in an encoder, has to determine codes to be employed when executing the
compression.

[0010] When Huffman decoding is employed, before starting compression of a given data file including symbols to
generate corresponding encoded output data, an encoder has to determine codes that are to be used to represent the
given data. Conveniently, the codes are based on probabilities, namely frequencies of occurrence, of the symbols in the
given data file. However, the frequencies, probabilities, or lengths of symbols have to be recorded, for example as side
information, namely as supplementary information, in the encoded output data, so that any Huffman decoder will be
able to decode the encoded output data to generate corresponding decoded data. Conveniently, the frequencies of
occurrence or lengths of symbols are integers, or probabilities which can be expressed as scales integers; such integers
included in the supplementary information add often merely a few hundred bytes to the encoded output data. Optionally,
it is also possible to write variable length codes themselves to the encoded output data, but this may in certain circum-
stances be awkward, because the codes may have mutually different sizes. Alternatively, it is feasible to write the
Huffman tree to the encoded output data, but this requires more data to be communicated than merely communicating
frequencies of occurrence of the symbols in the given data.

[0011] During operation, the decoder must be provided with information regarding what is at a start of an encoded
compressed file received at the decoder for being decoded. From data extracted from the encoded compressed file, for
example from a start thereof, the decoder is operable to construct an alphabet of a Huffman tree. After the Huffman tree
has been constructed in the decoder, the decoder is then able to decode a remainder of the file, using the Huffman tree
as a decoding tool. The decoder employs a relatively simple decoding algorithm which includes following steps:

(a) start at a root of the Huffman tree, and then read a first bit of the encoded output data to be decoded using the
Huffman tree;

(b) if the first bit is a "1", then follow a top edge of the Huffman tree; if the first bit is a "0", then follow a bottom edge
of the Huffman tree;

(c) read a second bit of the encoded output data, and then employ the second bit in a manner akin to the step (b)
towards "leaves" of the Huffmann tree, and so on until a "leaf’ of the Huffman tree is eventually reached, whereat
an original uncompressed symbol is to be found, often an associated ASCII code; that code is then output from the
decoder; and

(d) steps (b) and (c) are repeated until the encoded output data has been decoded.

[0012] Known contemporary Huffman encoding is beneficial to employ when an encoded string is large in size relative
to a code table employed to generate the string. Moreover, such contemporary Huffman coding is beneficial to employ
when a code table is defined a priori for both an encoder and a corresponding decoder. There is thus a need for alternative
encoding methods which address aforementioned limitations associated with known approaches to encoding and de-
coding data, for example aforesaid Huffman encoding and decoding methods. US 5838266 A discloses parallel com-
pression of colour video data based on look-up code table which is indexed by the difference of two successive input
data words.

Summary

[0013] The presentinvention seeks to provide an improved method of encoding data (D1) to generate corresponding
encoded data (E2).

[0014] The present invention also seeks to provide an improved encoder which is operable to employ the aforesaid
improved method of encoding data.

[0015] The present invention seeks to provide an improved method of decoding encoded data (E2) to generate cor-
responding decoded data (D3).

[0016] The present invention seeks to provide an improved decoder for decoding aforesaid encoded data (E2) to
generate corresponding decoded data (D3).

[0017] According to a first aspect, there is provided a method of encoding input data (D1) in an encoder to generate
corresponding encoded data (E2), characterized in that the method includes:

(a) analyzing symbols present in the input data (D1) and splitting and/or transforming the input data (D1) into one
or more data chunks;

(b) generating as a function of occurrence of the symbols at least one of: one or more code tables, one or more
frequency tables, one or more length of code word tables, one or more probability tables for the symbols present
in the one or more data chunks;

(c) computing one or more sets of indices relating the symbols in each data chunk to entries in at least one of: the
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one or more code tables, the one or more frequency tables, the one or more length of code word tables, the one or
more probability tables;

(d) assembling information of the one or more sets of indices relating the symbols in each data chunk, together with
at least one of: the one or more frequency tables, the one or more code tables, the one or more length of code word
tables, the one or more probability tables, information indicative of the one or more tables, to the encoded data (E2);
and

(e) compressing the symbols within the one or more tables to the encoded data (E2).

[0018] The presentinvention is of advantage in that the method involves splitting, namely dividing, the input data (D1)
into one or more data chunks, and/or compressing symbols in the input data (D1), so that the input data (D1) can be
efficiently encoded, for example in a manner which is best suited for each data chunk or compressed symbol, using
indices ("indexes") and associated one or more tables referenced by the indices.

[0019] Optionally, in the method, at least one of the one or more tables is pre-defined.

[0020] Optionally, the method includes delivering the encoded data (E2) containing the information of the one or more
sets of indices relating the symbols in each data chunk, together with at least one of: the one or more frequency tables,
the one or more code tables, the one or more length of code word tables, the one or more probability tables, the information
indicative of the one or more tables as well as the compressed symbols.

[0021] Optionally, the method includes generating the one or more tables for being regenerated during decoding based
upon their symmetry and corresponding symmetry-indicative information.

[0022] Optionally, the method includes delivering at least one of the one or more tables in a manner in which the at
least one of the one or more tables is storable for subsequent reuse.

[0023] Optionally, in the method, the information of the one or more sets of indices includes:

(i) indices of the symbols that occur in the chunk as such, and of which probability values are to be inserted into the
encoded data (E2), preceded by a total count of indices in the data chunk; or

(i) bits expressing which symbols out of all possible symbol values occur in the chunk and for which symbols
probability values are to be inserted into the encoded data (E2); or

(iii) information stating that starting from the beginning, all symbol value probabilities to be inserted into the encoded
data (E2), which in itself also expresses the count of indices.

[0024] The aforesaid splitting, namely dividing, optionally includes subdividing of the input data (D1).

[0025] Optionally, in (a), splitting is usually done, but sometimes it is also necessary to compress the available data
chunk with the optimal code table without splitting the data into new data chunks. Moreover, sometimes, the original
data is not split, but instead, new data are created, for example by one or more transformations to one or more data
chunks that need to be compressed most efficiently. Encoders implemented pursuant to the present disclosure can be
used to create different data chunks. Thus, it will be appreciated that this method is especially well suitable for video
codecs and audio codecs that are operable to code data with chunks that are from different time slots. Different frames
or sections are different data chunks and they can still be split to one or more chunks by using encoders implementing
one or more methods pursuant to the present disclosure. All these data chunks can reuse any table that is delivered
earlier, for example in the same or in the previous frames.

[0026] Embodiments of the presentinvention enable efficient delivery of code tables or frequency tables. This reduces
a data communication and/or data storage overhead needed for table delivery and/or storage. It also enables smaller
data chunks to be coded by utilizing coding tables which are better optimized for each individual data chunk. Thereby,
increased greater compression efficiency can be achieved, which means that the data storage capacity, the transmission
bandwidth and the energy consumption can be reduced.

[0027] Frequencies of various parts of data are often mutually different, and often their relative data entropy is also
mutually different, and for such reasons it is beneficial to split the data into multiple portions, namely data chunks.
Beneficially, different code tables are used for the portions, depending upon a nature of data and/or type of data and/or
content of data of the portions; by "nature" is meant one or more characteristics and/or parameters of the data. The
present invention provides methods which enable a given large data file to be split more efficiently to smaller portions,
namely data chunks, with an associated benefit that the delivery of the code table or frequency table can be optimized
for such data chunks. This split of the big data file enables substantial benefits in respect of modifying entropy of data
involved, and so it is capable of highly reducing an amount of encoded data to be communicated. The data values in
one or more data chunks can also be split, as aforementioned. This splitting, namely dividing, of data value can be
implemented, for example, by mutually separating the MSB (most significant bits) and LSB (least significant bits). The
data values are also optionally split to more than two separate data value chunks.

[0028] Optionally, the method includes applying one or more data compression algorithms in step (d) to generate the
encoded data (E2). More optionally, in the method, the one or more data compression algorithms include at least one
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of: Huffman encoding, VLC, entropy encoding, Arithmetic encoding, Range encoding, but are not limited thereto.
[0029] Optionally, the method includes splitting the input data (D1) into a plurality of data chunks and employing a
parallel architecture of processors for processing the plurality of data chunks in a substantially concurrent manner.
[0030] Optionally, the method includes generating the one or more sets of indices based on multiple data values that
are combined together. More optionally, in the method, indices (namely "indexes") are derived from one or more RGB-
pixels or YUV-pixels, that contain R, G and B pixel values or Y, U and V pixel values.

[0031] More optionally, the method includes dynamically switching between assembling the data chunks either unen-
coded or encoded into the encoded data (E2), as a function of an achievable data compression ratio for the data chunks
when included in the encoded data (E2).

[0032] Optionally, the method includes incorporating into the encoded data (E2) at least one trailing bit to indicate if
a symbol pertains to "change of code table" or to "end of data".

[0033] Optionally, the method includes generating for a given data chunk substantially only enough indices required
for referencing to one or more symbols present in the given data chunk.

[0034] Optionally, delivered code tables are also compressed, for example by employing Huffman coding, and such
code table compression method is also optionally provided with its own associated one or more code tables. More
optionally, in the method, the compression of the one or more code tables employs one or more subsidiary code tables.
[0035] Optionally, the method includes communicating the one or more code tables in a manner which enables the
one or more code tables to be employed in a decoder for decoding subsequently sent data.

[0036] Optionally, the method includes a step of including in the encoded data (E2) one or more identification codes
indicating from where the one or more code table are susceptible to being accessed, via one or more databases, and/or
one or more proxy databases.

[0037] Optionally, the method is arranged to encode one or more of following types of data: captured audio signals,
captured video signals, captured images, text data, seismographic data, sensor signals, analog-to-digital (ADC) con-
verted data, biomedical signal data, calendar data, economic data, mathematical data, binary data.

[0038] According to a second aspect, there is provided an encoder for encoding input data (D1) to generate corre-
sponding encoded data (E2), characterized in that the encoder includes:

(a) an analyzer for analyzing symbols present in the input data (D1), and for splitting and/or transforming the input
data (D1) into one or more data chunks;

(b) a generator for generating, as a function of occurrence of the symbols at least one of: one or more code tables,
one or more frequency tables, one or more length of code word tables, one or more probability tables for the symbols
present in the one or more data chunks;

(c) a computing engine for computing one or more sets of indices (namely "indexes") relating the symbols in each
data chunk to entries in at least one of: the one or more code tables, the one or more frequency tables, the one or
more length of code word tables, the one or more probability tables;

(d) a data assembler for assembling information of the one or more sets of indices relating the symbols in each data
chunk, together with at least one of: the one or more frequency tables, the one or more code tables, the one or more
length of code word tables, the one or more probability tables, information indicative of the one or more tables, to
the encoded data (E2); and

(e) a compressor for compressing the symbols within the one or more tables to the encoded data (E2).

[0039] Such splitting, namely dividing, optionally includes subdividing of the input data (D1).

[0040] Optionally, in (a), splitting is usually done, but sometimes it is also necessary to compress the available data
chunk with the optimal code table without splitting the data to new data chunks. Moreover, sometimes, the original data
is not split, but instead, new data are created, for example by one or more transformations to one or more data chunks
that need to be compressed most efficiently. Encoders implemented pursuant to the present disclosure can be used to
create different data chunks. Thus, it will be appreciated that this method is especially well suitable for video codecs
and audio codecs that codes the data with chunks that are from different time slots. Different frames or sections are
different data chunks and they can still be split to one or more chunks by using encoders implementing method pursuant
to the present disclosure. All these data chunks can reuse any table that is delivered earlier, for example in the same
or in the previous frames.

[0041] Optionally, the encoder is operable to deliver the encoded data (E2) containing the information of the one or
more sets of indices relating the symbols in each data chunk, together with at least one of: the one or more frequency
tables, the one or more code tables, the one or more length of code word tables, the one or more probability tables, the
information indicative of the one or more tables as well as the compressed symbols.

[0042] Optionally, the encoder is operable to deliver at least one of the one or more tables in a manner in which the
at least one of the one or more tables is storable for subsequent reuse.

[0043] Optionally, the encoder is operable to apply one or more data compression algorithms in the data assembler
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to generate the encoded data (E2). More optionally, in the encoder, the one or more data compression algorithms include
at least one of: Huffman encoding, VLC, entropy encoding, Arithmetic encoding, Range encoding.

[0044] Optionally, the encoder is operable to split the input data (D1) into a plurality of data chunks and to employ a
parallel architecture of processors for processing the plurality of data chunks in a substantially concurrent manner.
[0045] Optionally, in the encoder, the generator is operable to generate the one or more sets of indices based on
multiple data values that are combined together. More optionally, in the encoder, indices are derived from one or more
RGB-pixels or YUV-pixels that contain R, G and B pixel values or Y, U, and V pixel values. More optionally, the encoder
is operable to switch dynamically between assembling the data chunks either unencoded or encoded into the encoded
data (E2), as a function of an achievable data compression ratio (achievable) for the data chunks when included in the
encoded data (E2).

[0046] Optionally, the encoder is operable to incorporate into the encoded data (E2) at least one trailing bit to indicate
if a symbol pertains to "change of code table" or to "end of data".

[0047] Optionally, in the encoder, the generator is operable to generate for a given data chunk substantially only
enough indices required for referencing to one or more symbols present in the given data chunk.

[0048] Optionally, delivered code tables are compressed, for example by employing Huffman coding, and this com-
pression method optionally sometimes needs its own one or more associated code tables.

[0049] Optionally, delivered code tables can be reused in the same data frame or in the next data frames, namely the
data chunk encoding can reuse any table that is delivered before it for the other data chunk in this data frame or in the
previous data frames.

[0050] Optionally, optimal implementations for delivering the table are beneficially employed when implementing the
encoder, for example in encoded data, or by including in the encoded data one or more identification codes indicating
fromwhere the table can be accessed, for example from one or more databases, one or more proxy databases and similar.
[0051] Optionally, to provide for more efficient encoding of data, delivery of encoded data and decoding of encoded
data, it is beneficial that delivered and/or referenced tables, as aforementioned, are stored, for example to be used later,
for example when the index of the stored table has been delivered. Such an approach is capable of reducing a volume
of data that, for example needs to be communicated from an encoder to a corresponding decoder, pursuant to the
present disclosure.

[0052] Accordingto athirdaspect, there is provided a computer program product comprising a non-transitory computer-
readable storage medium having computer-readable instructions stored thereon, the computer-readable instructions
being executable by a computerized device comprising processing hardware to execute the method pursuant to the first
aspect.

[0053] According to a fourth aspect, there is provided a method of decoding encoded data (E2) generated by the
encoder pursuant to the second aspect; there is provided a method in a decoder of decoding encoded data (E2) generated
by the encoder, for generating corresponding decoded data (D3), characterized in that the method includes:

(i) receiving the encoded data (E2) and extracting therefrom information of one or more sets of indices, together
with at least one of: one or more frequency tables, one or more code tables, one or more length of code word tables,
one or more probability tables, information indicative of the one or more tables;

(ii) computing from the one or more sets of indices corresponding symbols in at least one of: one or more data
chunks, compressed symbols of entries in the one or more code tables, the one or more frequency tables, the one
or more length of code word tables, the one or more probability tables;

(iii) regenerating from the symbols one or more data chunks, using information from at least one of: the one or more
code tables, the one or more frequency tables, the one or more length of code word tables, the one or more probability
tables; and

(iv) combining and/or transforming the one or more data chunks to generate the decoded data (D3).

[0054] Optionally, in the method, at least one of the one or more tables is pre-defined.

[0055] Optionally, the method includes transcoding the decoded data (D3) to generate corresponding transcoded data
(D4) and/or generating the corresponding transcoded data (D4) from the encoded data (E2).

[0056] Optionally, the method includes regenerating the one or more tables based upon their symmetry and corre-
sponding symmetry-indicative information.

[0057] Optionally, the method includes receiving at least one of the one or more tables in a manner in which the at
least one of the one or more tables is storable for subsequent reuse.

[0058] Optionally, the method includes applying one or more data decompression algorithms in step (iv) to generate
the decoded data (D3). More optionally, in the method, the one or more data decompression algorithms include at least
one of: Huffman decoding, VLC decoding, entropy decoding, Arithmetic decoding, Range decoding.

[0059] Optionally, the method includes combining a plurality of the one or more data chunks to generate the decoded
data (D3) by employing a parallel architecture of processors for processing the plurality of data chunks in a substantially
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concurrent manner.

[0060] Optionally, the method includes generating the one or more sets of indices based on multiple data values that
are combined together. More optionally, in the method, the indices are derived from one or more RGB-pixels or YUV-
pixels that contain R, G and B pixel values or Y, U and V pixel values. More optionally, the method includes switching
dynamically between generating the one or more data chunks either unencoded or encoded into the encoded data (E2),
as a function of an achievable data decompression ratio for the data chunks when included in the encoded data (E2).
[0061] Optionally, in the method, the decoder is operable to extract from the encoded data (E2) at least one trailing
bit which is indicative of if a symbol pertains to "change of code table" or to "end of data".

[0062] Optionally, the method includes generating a given data chunk substantially from only enough indices required
for referencing to one or more symbols present in the given data chunk.

[0063] Optionally, the method includes decompressing the one or more code tables included in the encoded data (E2).
More optionally, the method includes decompressing the one or more code tables by employing Huffman decoding.
More optionally, in the method, decompression of the one or more code tables employs one or more subsidiary code
tables.

[0064] Optionally, the method includes receiving the one or more code tables in a manner which enables the one or
more code tables to be employed in the decoder for decoding subsequently sent data.

[0065] Optionally,the method includes extracting from the encoded data (E2) one or more identification codes indicating
from where the one or more code table are susceptible to being accessed, via one or more databases, and/or one or
more proxy databases.

[0066] Optionally, the method includes decoding one or more of following types of data: captured audio signals,
captured video signals, captured images, text data, seismographic data, sensor signals, analog-to-digital (ADC) con-
verted data, biomedical signal data, calendar data, economic data, mathematical data, binary data.

[0067] Optionally, the method includes receiving the encoded data (E2) from a plurality of data sources, and to combine
data provided from the sources to regenerate the encoded data (E2).

[0068] Accordingto afifth aspect, there is provided a computer program product comprising a non-transitory computer-
readable storage medium having computer-readable instructions stored thereon, the computer-readable instructions
being executable by a computerized device comprising processing hardware to execute the method pursuant to the
fourth aspect. According to a sixth aspect, there is provided a decoder for decoding encoded data (E2) generated by
the encoder pursuant to the second aspect; there is provided a decoder for decoding encoded data (E2) generated by
the encoder for generating corresponding decoded data (D3), characterized in that the decoder is operable:

(i) to receive the encoded data (E2) and to extract therefrom information of one or more sets of indices, together
with at least one of: one or more frequency tables, one or more code tables, one or more length of code word tables,
one or more probability tables, information indicative of the one or more tables;

(ii) to compute from the one or more sets of indices corresponding symbols in at least one of: one or more data
chunks, compressed symbols of entries in the one or more code tables, the one or more frequency tables, the one
or more length of code word tables, the one or more probability tables;

(iii) to regenerate from the symbols one or more data chunks, using information from at least one of: the one or more
code tables, the one or more frequency tables, the one or more length of code word tables, the one or more probability
tables; and

(iv) to combine and/or transform the one or more data chunks to generate the decoded data (D3).

[0069] Optionally, the decoder further includes a transcoder for transcoding the decoded data (D3) to generate cor-
responding transcoded data (D4) and/or generating the corresponding transcoded data (D4) from the encoded data (E2).
[0070] Optionally, the decoder is operable to regenerate the one or more tables based upon their symmetry and
corresponding symmetry-indicative information provided to the decoder.

[0071] Optionally, the decoder is operable to receive at least one of the one or more tables in a manner in which the
at least one of the one or more tables is storable for subsequent reuse.

[0072] Optionally, the decoder is operable to apply one or more data decompression algorithms in (iv) to generate the
decoded data (D3). More optionally, in the decoder, the one or more data decompression algorithms include at least
one of: Huffman decoding, VLC decoding, entropy decoding, Arithmetic decoding, Range decoding.

[0073] Optionally, the decoder is operable to combine a plurality of the one or more data chunks to generate the
decoded data (D3) by employing a parallel architecture of processors for processing the plurality of data chunks in a
substantially concurrent manner.

[0074] Optionally, the decoder is operable to generate the one or more sets of indices based on multiple data values
that are combined together. More optionally, in the decoder, the indices are derived from one or more RGB-pixels or
YUV-pixels that contain R, G and B pixel values or Y, U and V pixel values. More optionally, the decoder is operable to
switch dynamically between generating the one or more data chunks either unencoded or encoded into the encoded
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data (E2), as a function of an achievable data decompression ratio for the data chunks when included in the encoded
data (E2).

[0075] Optionally, the decoder is operable to extract from the encoded data (E2) at least one trailing bit which is
indicative of if a symbol pertains to "change of code table" or to "end of data".

[0076] Optionally, the decoder is operable to generate a given data chunk substantially from only enough indices
required for referencing to one or more symbols present in the given data chunk.

[0077] Optionally, the decoder is operable to decompress the one or more code tables included in the encoded data
(E2). More optionally, the decoder is operable to decompress the one or more code tables by employing Huffman
decoding. More optionally, in the decoder, decompression of the one or more code tables employs one or more subsidiary
code tables.

[0078] Optionally, the decoder is operable to receive the one or more code tables in a manner which enables the one
or more code tables to be employed in the decoder (60) for decoding subsequently sent data.

[0079] Optionally, the decoder is operable to extract from the encoded data (E2) one or more identification codes
indicating from where the one or more code table are susceptible to being accessed, via one or more databases, and/or
one or more proxy databases.

[0080] Optionally, the decoder is operable to decode one or more of following types of data: captured audio signals,
captured video signals, captured images, text data, seismographic data, sensor signals, analog-to-digital (ADC) con-
verted data, biomedical signal data, calendar data, economic data, mathematical data, binary data.

[0081] Optionally, the decoder is operable to receive the encoded data (E2) from a plurality of data sources, and to
combine data provided from the sources to regenerate the encoded data (E2).

[0082] According to a seventh aspect, there is provided a codec which includes at least one encoder pursuant to the
second aspect for encoding input data (D1) to generate corresponding encoded data (E2), and at least one decoder
pursuant to the sixth aspect for decoding the encoded data (E2) to generate decoded output data (D3).

[0083] Optionally, the codec is implemented such that the at least one encoder and the at least one decoder are
mutually spatially remote and mutually coupled together via a data communication network. More optionally, the codec
is implemented such that the data communication network is configured in a manner of a peer-to-peer communication
network. Optionally, the codec is implemented such that its encoder and its decoder are symmetrical in their processing
of data therethrough ; in other words, processing functions executed in the encoder are implemented as corresponding
inverse functions and executed in a reverse order in the decoder.

[0084] It will be appreciated that features of the invention are susceptible to being combined in various combinations
without departing from the scope of the invention as defined by the appended claims.

Description of the diagrams

[0085] Embodiments of the present disclosure will now be described, by way of example only, with reference to the
following diagrams wherein:

FIG. 1 is an illustration of a known encoder and a known decoder for encoding and decoding data;

FIG. 2 is an illustration of a method of encoding data pursuant to an embodiment of the present disclosure;

FIG. 3A isanillustration of an embodiment of an encoder and a decoder, collectively a codec, pursuant to the present
disclosure; and

FIG. 3B is anillustration of an alternative embodiment of an encoder and a decoder, collectively a codec, pursuant
to the present disclosure, wherein decoded data D3 in the decoder is transcoded to generate transcoded
data D4.

[0086] Inthe accompanying diagrams, an underlined number is employed to represent an item over which the under-
lined number is positioned or an item to which the underlined number is adjacent. When a number is non-underlined
and accompanied by an associated arrow, the non-underlined number is used to identify a general item at which the
arrow is pointing.

Description of embodiments

[0087] Inoverview, the present disclosure is concerned, for example, with encoders, decoders, codecs and associated
methods of operation. Moreover, embodiments of the present disclosure are capable in operation of improving delivery
of code tables, frequency tables, length of code word tables, or probability tables compared with known methods.
Furthermore, embodiments of the present disclosure are also capable of delivering one or more Huffman trees, in a
manner which enables fewer bits to be used for delivery of the one or more tables; there is thereby provided an increase
in a data compression ratio achievable during data encoding, especially when the amount of coded data accompanying



10

15

20

25

30

35

40

45

50

55

EP 3 108 584 B1

the one or more tables is relatively small. Code tables, frequency tables, length of code word tables or probability tables
are needed for many different entropy coding methods, for example for variable length coding (VLC) methods such as
Huffman coding, Arithmetic coding, Range coding, but not limited thereto. Both encoders, for example transmitters, and
decoders, for example receivers, beneficially employ methods as will be described below.

[0088] Embodiments of the disclosure described below are relevant to a world in which a volume of data being stored
and communicated is increasing rapidly with a passage of time. The storage and transmission of such data consumes
considerable storage capacity, transmission bandwidth and energy. Most of the data in the world is captured audio
signals, captured video signals, captured images, text data, seismographic data, sensor signal data, analog-to-digital
(ADC) converted data, biomedical signal data, calendar data, economic data, mathematical data, binary data but not
limited thereto. Embodiments of the disclosure are operable to reduce an amount of encoded data for all the aforemen-
tioned data types, and also for other types of data; there is thereby enabled efficient delivery of code tables, frequency
tables, length of code word tables or probability tables, thus enabling use of smaller data chunks that reduce the entropy
of the data efficiently, namely size of the data efficiently.

[0089] Moreover, smaller data chunks can be effectively handled via parallel processes to output results faster, and
such parallelism is common in modern microprocessor architecture, especially in future configurations of microproces-
sors, for example data processor arrays and high speed configurations of RISC (reduced instruction set computer)
processors.

[0090] For a given encoding method, a corresponding code table includes information indicative of lengths of code
words, for example expressed in bits, codes for representing the code words, and indices (namely "indexes") of the code
words. The code table can also be generated from the lengths of the code words. The indices (namely "indexes") of the
code words represent the values of corresponding original symbols that are coded with the code words. Similarly, the
frequency table contains frequencies of occurrence of the symbols and the indices of the symbol. The indices of the
symbols represent the values of the original symbols coded by the indices respectively. The frequency table can be
converted to a probability table and the probability table can be used as a rough estimate of the frequency table. The
conversion between the frequency table and the length of code words and vice versa can also be done.

[0091] When any of the aforementioned tables are delivered, one very important parameter in such delivery is the
maximum index of the table. The maximum index of the table represents how many different symbols, or how many
possible different symbols, are available in the delivered table, and also in the input data. For example, if given data is:

4,3,0,1,0,4,3,4,

then the real maximum index is 4, and the minimum index is 0, which means that there are potentially 5 (max - min + 1
=4 - 0 + 1) different symbols (0, 1, 2, 3, 4) present in the data. On account of there actually being only 4 different
symbols (0, 1, 3, 4) present in the data, the table is optionally also delivered by using '3’ as the maximum index, namely
a count of available different symbols, instead of'4’, namely possible different symbols. When the value 3 is used for the
maximum index value of the table, then some other mechanism is required for delivering the information concerning
which symbols are used for each table indices.

[0092] When the symbols are in order, there is optionally delivered the real maximum index (4) and availability bits,
for example, 11011 in this example case. Such delivery maps so that the table index 0 = symbol 0 that is marked as
index, and an associated symbol pair will then be (0, 0). Similarly, a remainder of the index and symbol pairs are (1, 1),
(2, 3) and (3, 4). It is also optionally possible to use index and symbol pairs directly for defining the used indices for
different table indices, and then to deliver the maximum index of table as '3’. This is a very valuable method, for example
when the symbols in the delivered table are sorted based upon their frequencies.

[0093] For example, in this case above, index and symbol pairs are, for example, (0, 4), (1, 0), (2, 3), and (3, 1).
Sometimes, the used index and symbol pairs are predefined, whereas at other times the index of the used symbol and
index pair table are delivered, In another different situation, the index and symbol pairs are delivered together with the
encoded data (E2). In yet another different situation, the decoder 60 is operable to retrieve the used index and symbol
pairs from a known location; in still another different situation, the decoder 60 is operable to retrieve the used index and
symbol pairs from the location whose corresponding location information was delivered together with the encoded data
(E2).

[0094] In some situations, it is advantageous to approximate the table to be delivered with the help of symmetry.
Utilizing symmetry makes it possible to deliver the coding table being used with a smaller data size than delivering an
entire table would require, without regard to whether or not the table is based on code lengths, on probabilities or on
frequencies of occurrence. Moreover, it is faster to generate a symmetrical table both in the encoder 50 and in the
decoder 60, because it contains less elements, namely fewer symbols. However, using symmetry makes the table slightly
sub-optimal, but the savings gained in delivered table data size compensates for that loss entirely or more, especially
if the amount of data being sent is reasonably small.

[0095] In the latest example above, symmetry is optionally utilized in delivering the table, because a symbol value 0’
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is more probable than ’1’ and correspondingly, a symbol value '4’ is more probable than '3’. Moreover, the probabilities
of symbol values 0’ and ’4’ are close to one another, and correspondingly, the probabilities of symbol values '1’ and ’3
are also close to one another. However, the value 2’ does not occur at all in the data, so therefore itis a most improbable
value, regardless from which direction it is inspected.

[0096] In cases when symmetry is utilized, a coding table can thus always be generated based on the sums of
occurrences of symmetrically corresponding elements. In such a case, there are altogether 5 occurrences of symbol
value 0’ and '4’, and correspondingly, there are altogether 3 occurrences of symbol value '7’ and '3". The element 2’
does not occur at all in the data, and therefore it does not necessarily need to be given its own symbol. However, in
some situations, a symbol can be generated for element ‘2’ as well, and in that case it would be included in both the
right hand table and the left hand table, when symmetry is utilized.

[0097] Thus, arange coding table is optionally generated in such a way that the counts of occurrences for the ranges
would be 5, 3 and (0), and thus the range table being used would be 5, 3, 0, 3, 5 for symbols zero to four, even though
the optimal frequency-of-occurrencebased range table of course would be 3, 2, 0, 1, 2, which then would require the
delivery of four values for frequency of occurrence, as compared with an optional implementation described above that
is based on symmetry, where only two values for frequency of occurrence need to be sent, namely delivered.

[0098] This same idea based on symmetry is optionally used with other coding methods such as Huffman coding, and
in that case, a symmetry-based table would be, for example, a table wherein left hand values receive the code ‘0’ and
right hand table values receive the code value ’1’. Thus, the Huffman code words would be, for example, 01, 00, does-
not-exist, 10, 11. Alternatively, if it is desired to reserve an option for the value 2’ to exist in future, then the codes would
be 01, 001, 000/100, 101, 11. In this implementation, in principle, only two code lengths would need to be sent/delivered
(1 and 1), or else three code lengths (1, 2, 2), and the table being used would be entirely recoverable in the decoder 60
in cases when it is known that the table is utilizing symmetry. In longer tables, the advantages would be even more
distinctly observable.

[0099] It will be appreciated that the piece of information on whether the table is utilizing symmetry or not, is optionally
already known previously, or else it is transmitted/delivered in the same manner as the piece of information on whether
an optimal table or a predefined table is being used, or a table that was generated dynamically from previous tables.
The delivery of the piece of information on whether or not the table is utilizing symmetry is executed by sending the
index of the table being used to the decoder 60.

[0100] For example:

(i) a table index '0' means that the table is sent/delivered in its entirety;

(i) a table index 1’ means that the table is symmetrical and that only a half of it will be delivered;

(iii) table indices 2 to 63 mean that a pre-defined table is being used; and

(iv) table indices 64 to 127 mean that a previously delivered and stored dynamic table is being used.

[0101] Itwill be appreciated thatthe symmetric tables can also be utilized as predefined or as dynamically stored tables.
[0102] Optionally, various coding methods are used, for example, with ODelta coding or without it, wherein ODelta
coding involves coding data differentially into a sequence of 0 and 1 values and employing a counting wraparound.
Moreover, when utilizing these various coding methods, it is advantageous to employ them in combination with the table
index of the table being used, also to optionally express whether the ODelta method has been executed on the data
before coding or not, and also whether or not the decoder 60 must then correspondingly execute the inverse operation
after decoding.

[0103] In such a case, for example the table indices are otherwise the same, but the value 128 is added to indicate
that ODelta has been used. If this insertion has not been performed, then ODelta has not been executed on the data
before coding. Of course, optionally, other values can be also added to the table index value; however, it will be essentially
appreciated that a table index expresses which kind of table is being used, and which kinds of additional data are
transmitted/delivered with the table index, together with encoded data.

[0104] Referring to FIG. 2 and FIG. 3A, there is provided an illustration of steps of a method of encoding input data
D1 to generate corresponding encoded output data E2; the steps of the method are indicated generally by 10, and
optionally employ one or more of: a step 20 of generating one or more frequency tables 25, a step 30 of generating one
or more coding tables 35, a step 40 of analyzing the input data D1 to select a most suitable encoding approach, but not
limited thereto. When implementing such a method 10 of encoding the input data D1, there has to be some mechanism
available that changes one or more symbols present in the input data D1 to corresponding indices (namely "indexes");
for example, a given index included in the indices is equal to a pixel value, for example in a pixel array image. The index
can also be equal to the pixel value minus a smallest pixel value present in the pixel array image. In such a situation,
the method also needs to deliver the smallest pixel value in the encoded output data E2, namely to be delivered somehow
from an encoder 50 to a corresponding decoder 60 by employing the method 10, or by employing an inverse thereof,
because otherwise the decoder 60 is not able to decode a corresponding given symbol back to its original value via use
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of its given index. The index can also be created from multiple information, for example via one or more of discrete
cosine transforms (DCTs), individual AC coefficients containing absolute AC coefficient values, signs of the AC coefficient,
run of the zero AC coefficients between itand a previous non-zero AC/DC coefficient, and an indication flag that represents
information pertaining to the current AC coefficient, and a last non-zero AC coefficient. The index is also susceptible to
being created based on multiple pixel values that are combined together, for example a 24-bit RGB-pixel that contains
8-bit R, G and B pixel values or a 10-bit value that contains two 5-bit Y pixel values.

[0105] Referring to FIG. 3B, transcoding of the data D3 in the decoder 60 to generate corresponding transcoded data
D4 is optionally implemented via a transcoder 70, for example in a multicasting situation wherein;

(i) there are multiple devices, each device hosting a decoder 60 for receiving the encoded data E2;
(i) at least some of the multiple devices are mutually different, and have associated mutually different output formats,
for example display screen layout, resolution, aspect ratio, display screen driver buffer capacity, and so forth.

[0106] Transcoding of the data D3 is required to generate the corresponding data D4 which can be handled in a
compatible manner by hardware and/or supporting software layers of the devices; the devices are optionally based upon
computing hardware, for example smart phones, specialist scientific equipment, televisions, hifi apparatus, videocon-
ferencing apparatus and similar. The transcoder 70 is implemented in software and/or in dedicated data processing
hardware, for example an ASIC.

[0107] As mentioned below, when implementing the method 10, there always has to be included a step that changes
one or more symbol values to one or more corresponding indices, and this step, or an inverse thereof, has to be
communicated to the decoder 60 or otherwise they have to be preset both for the encoder 50 and for the decoder 60.
An easiest approach to achieve such communication is to employ a direct relationship between a given symbol value
and its corresponding index value, for example an index value is equal to a corresponding pixel value, or the index value
is the number that is based from the bits representing S=sign flag, V=10-bit coefficient value, R=6-bit nonzero run value,
and L=last flag, for example as represented by:

SVVVVVVVVVVRRRRRRL

[0108] Itis notalways possible to use a direct relationship for multiple reasons, for example, when a direct relationship
is employed:

(a) it is impossible or inefficient to encode or decode data, indices (namely "indexes"), frequencies, probabilities or
lengths of symbols;

(b) an amount of different indexes is huge; or

(c) all symbols do not have frequency information available and for that reason some algorithms are not able to
generate codes for those symbols.

[0109] Some of such issues (a) to (c) can be, at least partially, solved by using escape codes or using some logic that
generates frequency information for all symbols. Quite often, it is still beneficial to use some other approach to convert
symbols to indices (also known as "indexes"). One approach involves always ensuring that there is some look-up-table
(LUT) that specifies indexes that are used for available symbols; here, the escape code is very beneficial for reducing
the size of encoding tables. This LUT has to be available in the encoder 50 and in the decoder 60, or it has to be delivered
from the encoder 50 to the decoder 60, or vice versa. When more optimal coding is needed to enable better compression
to be achieved, there are beneficially employed multiple tables that can be selected based on the index of available
LUT’s. However, this is sometimes not practical, because the frequency, or length of code word, combinations are so
huge that there is no sense to store all the different tables in data memory, or the delivery of such LUT’s requires too
much data to be communicated between the encoder 50 and the decoder 60. Thus, methods 10 pursuant to the present
disclosure enable efficient transmission of frequencies, length of code words, or probabilities from the encoder 50 to the
decoder 60 to be achieved using suitable symbols to index one or more transformations. It is always beneficial to use
length of code words instead of the frequencies, if the coding method is not able to utilize more accurate information
provided by way of frequency information, for example VLC coding methods are not able to utilize frequency information,
but conversely Arithmetic coding and Range coding are capable of utilizing frequency or probability information.
[0110] Anexample of an embodiment of the disclosure willnow be described in greater detail, wherein there is employed
length of code words for encoding purposes; however, a corresponding embodimentwhich employs frequency information
or probability information is also feasible.

[0111] In the encoded data E2, see FIG. 2, for example an encoded data stream, there is included data values that
can contain 20 symbols, namely values from 0 to 19, but only 8 data values, namely minimum value = 2 and maximum
value = 19, of them are actually available in the current data stream. These minimum and maximum values are optionally
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also delivered separately as described later to enable more savings in table delivery to be achieved. Corresponding
frequencies, wherein sum = 148, length of code words has a minimum length = 1 and a maximum length = 6, and indices
("indexes") for the symbols are, for example, based on Table 1 below, it can be determined, without compressing these

symbols, that there are required 148 * 5 bits = 740 bits to convey the bit stream.

Table 1: Example bit stream encoding

Value | Frequency | CWLen | Freq 1 (bits) | Frequency2 | Freq3 (bits) | Index 1 | Index2
2 7 4 4 (4) 84 128 (4) 2 0
4 2 6 1 (6) 24 32 (6) 4 1
7 81 1 32 (1) 972 1024 (1) 7 2
9 1 6 1(6) 12 16 (7) 9 3
12 35 2 16 (2) 420 512 (2) 12 4
13 9 4 4 (4) 108 128 (4) 13 5
14 5 5 2 (5) 60 64 (5) 14 6
19 8 4 4 (4) 96 128 (4) 19 7

[0112]

For a coding regime as presented in Table 1, if there is not a suitable frequency table or code table available,

for example predefined or specifiable by way of a reference index, in the encoder 50 and in the decoder 60, then there
are several methods which are potentially available for sending these needed code words, namely lengths and codes,
from the encoder 50 to the decoder 60.

[0113] A first example method modifies the frequencies of the data and then generates a corresponding code table,
wherein a least probable symbol, namely longest code word, is allocated one additional bit and all symbols that are not
available in the data are allocated such long lengths of code word that they do not effect the coding, but enables the
encoder 50 and the decoder 60 to create a mutually similar frequency table and a mutually similar Huffman tree. On
account of there being 12 missing symbols, such frequency modification can be implemented, for example, by multiplying
the original frequencies by 12 and setting a frequency value of 1 for all the symbols that do not have any real frequency
value, namely frequency value = 0. The modified frequency values can be seen, for example, from the Frequency2
column of Table 1 for all the symbols that have frequencies available. Based on these new frequencies, the lengths of
code words for all 20 symbols can be created as:

11,11,4,11,6, 11, 11,1, 11, 7,11, 11, 2, 4, 5, 10, 10, 10, 10, 4

[0114] Using this kind of code table, there are (7*4 + 2*6 + 81*1 + 1 *7 + 35*2 + 9*4 + 5*5 + 8*4 =) 291 bits needed
for delivering the coded symbols from the encoder 50 to the decoder 60. For correct data encoding and subsequent
data decoding, the encoder 50 and the decoder 60 have to use similar frequencies, wherein such frequencies can be
created based on these new lengths of code words and the result can be seen from column Freq3 (= 2(maxbitlen-bitien))
for symbols that have frequency; "maxbitlen" is an abbreviation for "maximum bit length", and "bitten" is an abbreviation
for "bit length". Other symbols are allocated frequencies 2 (bitlen = 10) or 1 (bitlen = 11).

[0115] This first method enables the generation of a code table that contains all possible symbols, namely 20 symbols
in the aforementioned example; it is beneficial when the same code table is used also for other similar types of data.
Such kind of lengths can also be optionally compressed with any compression method, without any additional information
and so the code table is easy to be delivered between the encoder 50 and the decoder 60 in potentially all situations.
For example, without compression, this code table requires 4 bits for representing all length of code words => 20 length
* 4 bits / length = 80 bits.

[0116] This first method has an inefficiency, compared to optimal Huffman codes, of only 1 bit for every least probable
symbol, namely = 1 bitin this first example method. Additionally, there are also those bits that are needed for compressing
and delivering the lengths of code words, namely code table, from the encoder 50 to the decoder 60. Number 20, namely
the number of all possible symbols, is optionally delivered, or it may also be known by the decoder 60.

[0117] Next, asecond example method will be described toillustrate an alternative embodiment of the presentinvention.
The second method generates the lengths of the code words only for the symbols that are available, namely for those
symbols that have a frequency value > 0. An index used for Huffman code table generation is index2 (see Table 1), but
the index that has to be delivered from the encoder 50 to the decoder 60 is index1, namely = symbol value (see Table
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1). Such generated lengths of code words can be seen from column CWLen (see Table 1). Using this kind of code table,
there are (7*4 + 2*6 + 81*1 + 1*6 + 35*2 + 9*4 + 5*5 + 8*4 =) 290 bits needed for delivering the coded symbols. Based
on these lengths of code words, the encoder 50 and the decoder 60 are operable to create a frequency table seen in
column "Freql" of Table 1.

[0118] The first delivery method for this kind of code table delivers the length of code word and the index of the code
word as a pairs of numbers as follows:

(2,4), (4,6),(7,1),(9,6), (12, 2), (13, 4), (14, 5), (19, 4)

wherein the pairs are denoted by brackets.

[0119] Such a delivery method requires 5 bits for every index and 3 bits for every length of code word => 8 bits for
every pair and 8 * 8 bits = 64 bits in total.

[0120] These indices (namely "indexes") can also be delta encoded and then the pairs are as follows:

(2,4),(2,6),(3,1),(2,6),3,2),(1,4),(1,5), (5, 4)

[0121] Now, it will be appreciated that only 3 bits for every index and 3 bits for every length of code word is needed
=> 6 bits for every pair and 8 * 6 bits = 48 bits to convey the code table. These index and lengths of code word values
are beneficially separated to own corresponding data streams that often enable improved compression to be achieved
in comparison to combined 8- or 6-bit values. The streams are now:

2,4,7,9,12,13,14,19
and

4,6,1,6,2,4,5,4=>8*5bits + 8 * 3 bits = 64 bits in total.
[0122] When indices ("indexes") of a first stream are delta coded, there is thereby generated:

2,2,3,2,3,1,1,5
and

4,6,1,6,2,4,5,4=>8"3 bits + 8 * 3 bits = 48 bits in total.

[0123] This is a best, namely optimal, delivery method, when an amount of possible symbols is high, but when the
data contains only a few mutually different symbols.

[0124] All these aforementioned data streams can be compressed and delivered from the encoder 50 to the decoder
60, when in operation. There is no inefficiency associated with this method compared to optimal Huffman codes, but
this method of the disclosure still consumes considerable bits to deliver those streams containing information of indices
(namely "indexes") and lengths of code words. The value 8, namely = number of available symbols, has to be delivered
also, because otherwise the decoder 60 is not able to ascertain how many values or pairs should be decoded to the
code table. In this case, a number 20, namely number of all possible symbols, does not need to be delivered between
the encoder 50 and the decoder 60.

[0125] Some of the methods described in the foregoing are susceptible to being employed in combination for achieving
especially favourable encoding of the input data D1 in the encoder 50 to generate the corresponding encoded data E2,
likewise an inverse thereof at the decoder 60. Optionally, all these solutions create the Huffman codes only for the
symbols that are available, for example in a manner akin to the second method. Moreover, the frequency table generated
from these data lengths can be seen in column Freql (see Table 1).

[0126] In comparison to the first method, the second method is also able to set the length of the code word to zero,
when it is not available, but it is still necessary to deliver such information from the encoder 50 to the decoder 60; this
is possible to implement due to a fact that a real length of a code word can never be zero. This causes following stream
of lengths:

0,04,0,6,0,0,1,0,6,0,0,2,4,5,0,0,0,0, 4
which only requires originally 3 bits for all the length of the code words => 20 * 3 bits = 60 bits.
[0127] These types of lengths can also be compressed with any compression method without any additional information

and so the code table is easy to be delivered between the encoder 50 and the decoder 60 in all situations. Moreover,
this data also often contains numerous zero values and so it can be easily compressed, for example by using VLC or
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RLE. A number 20, namely a number of all possible symbols, is optionally delivered from the encoder 50 to the decoder
60, or it is known a priori by the decoder 60.

[0128] Another embodiment uses bits to specify which data symbols are available and which are not. In a situation
where there are generated two data streams, wherein a first stream contains bits and a second contains lengths of the
code words as follows:

0,010,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0, 1
and
4,6,1,6,2,4,5,4

there is required 1 bit for every symbol and 3 bits for every length of available code word => 20 * 1 bits + 8 * 3 bits = 44
bits in total. This is usually a best, namely optimal, delivery method.

[0129] Such streams are further compressible by utilizing an entropy modifier (EM) and/or VLC. As aforementioned,
the number 20, namely the number of all possible symbols, is optionally delivered between the encoder 50 and the
decoder 60, or it is supplied a priori to the decoder 60. Moreover, the number 8, namely the number of available symbols,
does not need to be delivered between the encoder 50 and the decoder 60, because it can be calculated from the bits
that have a value 1.

[0130] For all the previous described methods pursuant to the present disclosure, the encoder 50 and the decoder 60
have to possess information regarding how many different symbols can be used, for example 20 symbols in the aforesaid
example, or how many different symbols are available, for example 8 in the aforesaid example. If the value, namely the
number of different symbols, is not available in the decoder 60, it has to be delivered to the decoder 60. Optionally, some
data can be saved in a table which is delivered by sending small amounts of additional information to specify a range
in which the data values are available, for example, it is feasible to deliver values 2 (minimum) and 19 (maximum) to
specify a range in which values are to be included. In this example, such delivery often uses more bits than it saves, but
in a situation where, for example, 8-bit pixels contain only values from 60 to 200, the saving in bits to be communicated
from the encoder 50 to the decoder 60 is remarkable. The delivery of such a range enables that all the bits or values
that are otherwise used for smaller than the smallest value and bigger than the biggest value do not need to be delivered
from the encoder 50 to the decoder 60. Moreover, it will be appreciated that, when the range is delivered from the encoder
50 to the decoder 60, there is no need to deliver the first and the last index value in a situation wherein the index values
otherwise were sent with or without delta encoding. The same applies also for the first and the last value 1 bits in the
last example. The delivery of minimum and maximum values is optionally also utilized when employing other methods,
for example ODelta coding, a method disclosed in patent application GB1303661.1 , filed on 1st March, 2013 by Gurulogic
Microsystems Oy. A best advantage of delivering minimum and maximum values is achieved when all the methods
modifying entropy and implementing entropy coding use the same information and that is delivered only once.

[0131] The methods as described in the foregoing are optionally employed selectively, for example in response to
how many symbols are to be encoded in a given data chunk, for example divided from a total body of data to be
communicated from the encoder 50 to the decoder 60. Thus, the selection of the previously elucidated methods depends
on how many different symbols are available, how many of them are really used, what is the frequency of the least
probable symbol, and how indices (namely "indexes") of available symbols are distributed through the possible symbols.
[0132] The scaled probabilities can also be calculated for the symbols shown in Table 1 based on the frequency values.
The number of symbols is, for example, 148. The scaled probabilities in this example are beneficially calculated by using
two different probability multipliers, namely 256 and 32. Using the probability multiplier 256 for the first symbol, there is
therefrom calculated the scaled probability value as Round(256 * 7/148) = 12, wherein "Round" is an integer rounding-
up function. All the calculated scaled probability values with multiplier 256 are thus as follows:

12, 3, 140, 2, 61, 16, 9, 14
[0133] The sum of the scaled probability values is 257, namely > 256, and it is beneficial to reduce some value by 1.
Such areduction is beneficially implemented in order to cause as little effect as possible to the actual coding. For example,
in this case, the value 2, namely the smallest value, can be reduced to a value 1, or the value 9, namely the smallest
rounded up value, can correspondingly be reduced to a value 8, so that the scaled probability values with multiplier 256
for Range coding or for Arithmetic coding are as follows:

12, 3, 140, 1, 61, 16, 9, 14 (sum = 256 = probability multiplier).
[0134] The delivery of scaled probabilities (with multiplier 256) can be made as follows:

0,01010010,1001,1,1,0,0,0,0,1
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and
12,3, 140, 1,61, 16, 9, 14
[0135] When the probability multiplier value is 32, then the scaled probability values are as follows:

2,0,18,0,8,2,1,2
and after sum equalization as follows:

1,0,18,0,8,2,1,2

[0136] Now, it will be appreciated that a zero value is calculated for some of the scaled probability values. This means
that those values must be delivered, for example, by using an escape symbol. The scaled probability for the escape
symbol needs to be calculated, and it may not be smaller than the value 1. In this case, it gets allocated a value 1,
because Round (32 * (2 + 1) / 148) = 1. Now, this escape symbol has to be added to the other symbols and the new set
of symbols is then: "escape”, 2, 7, 12, 13, 14, and 19. Those new symbols are beneficially allocated indexes in a range
from 0 to 6. The scaled probabilities for the new symbols, when the probability of the escape symbol is reduced from
the one or more other symbols, for Range coding or Arithmetic coding are as follows:

1and 1, 18, 8, 2, 1, 1 (sum = 32 = probability multiplier).
[0137] The delivery of scaled probabilities (with multiplier 32 and escape code) can be made as follows:

0,01,0,0001,000011,1,0,0,0,0, 1
and

1,1,18,8,2,1,1

[0138] It will be appreciated that the first symbol is the escape symbol and bits specify the other symbol values.
[0139] When the escape symbol is defined, this table can be better used also in the future, as aforementioned. Now,
also the symbols that were not present in this data can be delivered using the escape symbol, if they will be present in
the future data.

[0140] Utilization of escape codes with range encoding are presented in another patent application by the Applicant
Gurulogic Microsystems Oy, Title: "Encoder, decoder and method" filed on 20 February 2014 with application number
GB1403038.1. As mentioned above in the explanation of Table 1, it is optionally also possible to use a predefined table
or a table described by an index instead of the delivered table, when the data D1 is encoded in the encoder 50, and
subsequently decoded in the decoder 60. This means that the used code, frequency, probability or code length table is
known beforehand by the encoder 50 and by the decoder 60, or the table is selected from a limited set of alternative
tables, and the encoder 50 delivers the selection to the decoder 60. The predefined table is optionally available locally
to the decoder 60.

[0141] The table can be previously stored based on the delivered parameter, for example an index of the table and/or
a maximum index of the table. Alternatively, the table can be generated with an algorithm implemented in an initialization
function or with an algorithm in the previously stored table; such creation, namely generation, of the table, is also based
on the delivered parameters, for example on an index of the table and/or on the maximum index of the table and/or on
the minimum index of the table. Instead of a previously stored table, it is also optionally possible to use a table that was
delivered earlier during the data encoding of the data D1 to generate the encoded data E2.

[0142] Forexample, when VLC coding is used, typically the length of codes are stored earlier for different table indices,
and the code table can be generated based on those length values by using the full table or by using only a part of the
table values. The used part can be defined based on the delivered table parameters or based on the table index. Similarly,
when range coding is used, typically the probability table is generated based on the form of the table, for example
delivered via use of a table index, and the length of the table, for example delivered as a maximum index of the table.
[0143] There will now be described another example method of the disclosure that enables efficient code delivery
without using a separate escape symbol, while still enabling all the symbols to be coded very efficiently for a current
given data chunk and for future data chunks that have slightly different symbol frequencies. This other method can be
implemented so that all the symbols, namely those which have values available as well as those which do not have
values available, will be allocated at least the value one as the scaled probability. If the scaled probability value is 1,
then the availability bit will be equal to 0, and for the other scaled probability values the availability bit will be equal to 1.
The scaled probability value then needs to be delivered only for the symbols whose availability bit is equal to 1. Details
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of the method can be found in the patent application by the Applicant Gurulogic Microsystems Oy, namely GB1403038.1,
hereby incorporated by reference, but the table delivery in the previous example above is then as follows:

0,00,0000100001000000,0
and

10, 4 (sum = 18*1 + 10 + 4 = 32 = probability multiplier).

[0144] This example now shows an advantageous solution, which yields quite similar performance with Range coding
than can be achieved with Huffman coding for encoding the entropy of data. Such a solution is able to deliver code
probability tables very efficiently. With other types of data, or with other types of probability multiplier values, this solution
is clearly, in many situations, a best, namely optimal, coding method to employ. For that reason, the delivery of its code
table is herewith described in greater detail.

[0145] Optionally, the encoder 50 and the decoder 60 can store all the tables, in a static manner or a dynamically
updatable manner, which are to be utilized by the encoder 50 and the decoder 60. If the tables are stored, they are
beneficially identified in data sent from the encoder 50 to the decoder 60 by way of an index which uniquely identifies
its corresponding stored table. Such indexing of tables potentially enables a huge saving of overhead data otherwise
required to sent for delivering a code table from the encoder 50 to the decoder 60.

[0146] The utilization of the previously stored table can be appreciated, for example, in a following example. For the
delivered table, the last probability table presented in the previous example, namely 1,1,1,1,1,1,1,10,1,1,1,1, 4,
1,1,1,1,1,1, 1, is selected to be added for reuse purposes; for such purpose, the table is allocated an index value of,
for example, "17". Now a new data chunk is needed to be encoded and it has symbol values and frequencies as provided
in Table 2.

Table 2: Example with second symbol values and frequencies for table reuse

Value Frequency
1 3

5 1

7 68

8 1

10 4

12 32

14 3

18 1

[0147] Now all the available probability tables for Range encoding can be evaluated from Table 2, and it is very probable
that the table 17 is selected to be the best probability table to be used for delivering this new data from the encoder 50
to the decoder 60 with Range coding. At least, it is easy to see that the delivery of a new probability table requires a lot
more data than the amount of additional data that the table 17 creates over the ideal entropy encoding result. For that
reason, table 17, or some other probability table, can be reused instead of needing to deliver a new better optimized
probability table. When a table is reused, its index 17 is delivered from the encoder 50 to the decoder 60, and after that,
Range coding values can be delivered from the encoder 50 to the decoder 60. When a table cannot be reused, then a
value, for example 0 or a next free table index, that defines a new table delivery is first delivered from the encoder 50
to the decoder 60, and then the table is also delivered from the encoder 50 to the decoder 60, and after that, the Range
coding values can be delivered from the encoder 50 to the decoder 60. Often, the amount of coded symbols also needs
to be delivered, for example typically before Range encoded data, which enables proper decoding of data in the decoder
60.

[0148] Optionally, it is also possible to modify the code table that is already in use and only send the changes therein,
thus resulting to a new code table. Further optionally, the already delivered code table can be used in adaptive manner
after delivering/receipt.

[0149] Optionally, the encoder 50 and the decoder 60 are operable to create similar full tables that also enable coding
of other symbols for future use of similar types of data, where the currently missing symbols might be present. These
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tables can be stored and provided with a new code table index. It is possible to store both types of tables, namely one
without fulfill and another with fulfill. Moreover, it is also possible to store only the original table and, when it is needed
next time with fulfill property, it can then be indicated separately in a communication from the encoder 50 to the decoder
60. A solution that stores fulfilled tables is more preferable, because it simplifies decision-making and does not require
any additional indication to be delivered indicative of whether or not the table needed is fulfilled. The fulfill of the table
can be also implemented such that the table containing all the values is filled with frequencies decreasing from, for
example, 4 to 1 so that the next symbols will be allocated relatively shorter symbols and the last symbols will be allocated
relatively longer symbols. By employing such an approach, the order of symbols corresponds to an order of available
symbols in a future stream of data.

[0150] Inthe examples described in the foregoing, delivery of lengths of code words and delivery of scaled probabilities
are beneficially employed, although similar techniques can also be used for delivering frequency values needed for
Huffman coding, Arithmetic coding or Range coding. Beneficially, a best coding method to employ uses least bits when
the encoded data is added with the overhead information that is needed to deliver the code table, the length of code
words, the probability table or the frequency table, thereby enabling, for example, smaller portions of data to be sent
from the encoder 50 to the decoder 60 using encoding methods specifically optimized for a nature and/or data type of
content included in the smaller portions of data, namely data chunks. For such reasons, the best result with Arithmetic
coding and Range coding can be achieved when the frequency values are quantized, at least to a limited extent, so that
the frequency table presents nearly correct values that can be delivered with clearly less amount of bits than the exact
table and so the optimality is only slightly reduced from the coding of symbols, for example when employing entropy
coding. Moreover, delivery of scaled probability tables enables very efficient and nearly optimal Range coding and
Arithmetic coding implementations to be realized.

[0151] When there is only a small amount of data to be communicated from the encoder 50 to the decoder 60, it is
typically better to communicate the data without substantially employing any form of encoding. However, when the
amount of data increases, then it is beneficial to employ Huffman coding with approximately correct lengths of code
words. As a volume of data that is to be communicated from the encoder 50 to the decoder 60 increases, progressively
more benefit is derived from using more accurate code tables. Moreover, when there is a considerable amount of data
to be Arithmetically coded or Range coded, best coding results are obtained when more efficient entropy coding is
employed; there is thereby gained a coding advantage over the bits needed for delivering a frequency or a probability
relative to the bits needed for delivering a code table. Delivering an index of a probability table, a frequency table, length
of code word tables, or a code table is always similar, and when an index is used, the method that has the best table
available enables a best compression performance to be achieved, A selection of the coding method used has also to
be delivered from the encoder 50 to the decoder 60, if it is not fixed based on the data or based on the amount of data.
[0152] The encoder 50 and the decoder 60 collectively form a codec 100. In a practical situation, there may be one
encoder 50 and one or more decoders 60, for example in a situation where the encoder 50 generates the encoded data
E2 which is broadcast widely to numerous decoders 60, namely "multicasting”, for example via wireless, optical fibre
communication network and similar. Moreover, situations can arise, for example in a peer-to-peer data communication
network, wherein a decoder 60 sources its encoded data E2 from several encoders 50 coupled within the peer-to-peer
network, where the encoded data E2 is supplied in separately encoded data chunks which are collected together at the
decoder 60; such a configuration is beneficial because certain portions of the encoded data E2 can be sourced more
locally to the decoder 60 which eases data load on long-distance data communication network links employed for
implementing such peer-to-peer networks. The encoder 50 and the decoder 60 are susceptible to being implemented
in dedicated digital hardware, in computing hardware which is operable to execute one or more software products
recorded on non-transitory data storage media, or a combination thereof. The encoder 50 and decoder 60 are useable
in audio recording and/or playback apparatus, in video recording and/or playback apparatus, in personal computers, in
smart phones, in digital cameras, in video cameras, in televisions, in Internet terminals, in scientific apparatus, in sur-
veillance and/or security systems, in satellites configured for ground-monitoring functions, in seismic sensing systems,
but not limited thereto.

[0153] Embodiments of the disclosure are capable of enabling more efficient delivery of tables, for example coding
tables, frequency tables, probability tables or lengths of code words, thereby making it attractive to split data into smaller
chunks of data, for example which can then be encoded individually in an optimal manner. Moreover, the tables are
optionally encoded using an entropy encoding method. These smaller data chunks optionally need their own corre-
sponding code table, frequency table, probability table or lengths of code words; this is beneficial if there are many
different tables available, as only the indices of given tables need to be delivered for different data chunks. Otherwise,
the new table also needs to be delivered to the decoder 60. When a given table is delivered, it is often beneficial to store
it in a data memory, for example a data memory of the decoder 60, for future use with its own unique reference index.
[0154] In an example embodiment of the disclosure, every data block is delivered as an individual data block, with
supporting information sent describing how many data blocks belong to a mutually similar body of data; such commu-
nication of the data blocks is often quite inefficient, because, for all the data blocks, there is need to deliver an identification
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of coding method employed, an amount of symbols, and a code table, frequency table or probability table thatis employed.
Additionally, the number of data blocks belonging to the mutually similar body of data also needs to be delivered from
the encoder 50 to the decoder 60.

[0155] Optionally, in the code table, there is beneficially employed an insertion of one or more additional symbols that
have their own corresponding meaning. Typically, in big code tables, an "escape" symbol beneficially has its own code
word. Moreover, there is beneficially also an own code word available for "end of coefficients" symbol in the coding table
that is used for DCT coefficients in JPEG. This means that the method is already known to the decoder 60, such that
the method can be utilized in a very efficient manner by adding new coding symbols that can be used, for example, for
"change of code table", "end of data" and also for "escape", if it is needed. These additional symbols can be generated
so that their frequency is 1 every time when they are to be used. If an available table is used, then a corresponding
identification is added as a symbol so that it splits the code with one of the symbols that has the longest code word. If
there is data left, for example there is a new data chunk after a current data chunk, the encoder 50 beneficially uses a
"change of coding table" symbol and not an "end of data" symbol. When this "change of coding table" symbol is delivered,
an index of the new coding table is delivered after it. The value of index defining the new coding table is, for example,
employed when there is no table available and from 1 to amount of tables when there are already tables available.
Optionally, this index for the new coding table has a value that uses as many bits as it is required to present all the
available or suitable tables for the data. If a value 0 is delivered as an index for the new coding table, then the delivery
of code table is needed before the next symbols are encoded to a data stream provided from the encoder 50 to the
decoder 60. Otherwise, after the index identifying the new coding table, new symbols can be immediately encoded within
this new coding table. When a last data chunk is coded and a last data value is delivered to the decoder 60, the encoder
50 delivers the "end of data" symbol. In this case, only the "end of data" symbol is valid and "change of coding table" is
not used. When the "end of data" symbol is delivered, there is no need to continue delivery of any data thereafter. This
"end of data" symbol enables there to be no need to deliver the number of data values for each data chunk. Moreover,
neither the coding method is needed to be delivered to the decoder 60, because only the used code table, frequency
table, probability table or lengths of code words, is changed for different data chunks. Thus, the total amount of overhead
data to be sent from the encoder 50 to the decoder 60 is quite small when the code table is changed during the encoding
and subsequent decoding of data. One trailing bit is needed to detect if a symbol pertains to "change of code table" or
to "end of data", or it is possible to generate both symbols with frequency 1 to the code table.

[0156] Occasionally, it is beneficial to send the amount of data values, the amount of encoded data or use the "end
of data" symbol depending on the data, the amount of data, used coding method and implementation of decoder 60 and
encoder 50. Moreover, it is optionally beneficial to employ parallelism when processing data in the encoder 50 and/or
decoder 60, namely the amount of coded data is delivered and so the decoder 60 can easily split the data for different
processors, processes and threads. Typically, there is often a variety of approaches that is best suited to deliver infor-
mation regarding how many data values need to be decoded and, in such case, there is no need to deliver a corresponding
selection; however, when multiple best choices are available, the encoder 50 selects the method and delivers a corre-
sponding decision regarding a most suitable choice to the decoder 60.

[0157] It will be appreciated from the foregoing, that the decoder 60 implements substantially an inverse of encoding
functions executed in the encoder 50, when the data D1 and the data D3 are to be mutually substantially similar, for
example as illustrated in FIG. 3A. However, many practical situations, for example when multicasting the encoded data
E2 to a plurality of mutually different devices, require use of a transcoder 70 to transcode the data D3 to generate
corresponding transcoded data D4 which is compatible with a given device hosting the decoder 60 and its associated
transcoder 70, as illustrated in FIG. 3B Optionally, both the decoder 60 and the transcoder 70 are implemented using
computing hardware; optionally, the transcoder 70 is implemented in dedicated transcoding hardware, for example a
hardware dongle or similar. Embodiments of the present disclosure are susceptible to being configured to provide lossless
or lossy encoding and decoding of data. Optionally, the decoder 60 is also operable to perform transcoding, for example
providing data to a display device which is different to that required to render the data (D1). In such a case, the data
processed through the codec 100 is never decoded back to its original format. Instead, the encoded data E2 is, for
example, converted directly into some other format, in which it would then be rendered, for example to a screen or stored
into a file. An example embodiment of such transcoding is where the data D1 was originally in YUV format, and then it
is compressed and transmitted to a receiver; the receiver recovers the data block-by-block, and performs color conversion
on it and scales it into an RGB image suitable to be rendered on a screen, without even reconstructing a full resolution
YUV result image.

[0158] The decoder 60 is operable to employ a method of decoding encoded data (E2) generated by the encoder 50,
for generating corresponding decoded data (D3), wherein the method includes following steps of:

(i) receiving the encoded data (E2) and extracting therefrom one or more sets of indices, together with one or more

frequency tables, and/or one or more code tables, and/or one or more length of code word tables, and/or one or
more probability tables, and/or information indicative of such one or more tables;

19



10

15

20

25

30

35

40

45

50

55

EP 3 108 584 B1

(i) computing from the one or more sets of indices corresponding symbols in one or more data chunks and/or
compressed symbols of entries in the one or more code tables, and/or the one or more frequency tables, and/or the
one or more length of code word tables, and/or one or more probability tables; and

(iii) regenerating from the symbols one or more data chunks, using information from the one or more code tables,
and/or one or more frequency tables, and/or one or more length of code word tables, and/or one or more probability
tables; and

(iv) combining and/or transforming the one or more data chunks to generate the decoded data (D3).

[0159] Optionally, the method includes receiving at least one of the one or more tables in a manner in which the at
least one of the one or more tables is storable for subsequent reuse.

[0160] Optionally, the method includes applying one or more data decompression algorithms in step (iv) to generate
the decoded data (D3). More optionally, in the method, the one or more data decompression algorithms include at least
one of: Huffman decoding, VLC decoding, entropy decoding, Arithmetic decoding, Range decoding.

[0161] Optionally, the method includes combining a plurality of the one or more data chunks to generate he decoded
data (D3) by employing a parallel architecture of processors for processing the plurality of data chunks in a substantially
concurrent manner.

[0162] Optionally, the method includes generating the one or more sets of indices based on multiple data values that
are combined together. More optionally, in the method, the indices are derived from one or more RGB-pixels that contain
R, G and B pixel values or Y, U and V pixel values. More optionally, the method includes switching dynamically between
generating the one or more data chunks either unencoded or encoded into the encoded data (E2), as a function of an
achievable data decompression ratio for the data chunks when included in the encoded data (E2).

[0163] Optionally, in the method, the decoder 60 is operable to extract from the encoded data (E2) at least one trailing
bit which is indicative of if a symbol pertains to "change of code table" or to "end of data".

[0164] Optionally, the method includes generating a given data chunk substantially from only enough indices required
for referencing to one or more symbols present in the given data chunk.

[0165] Optionally, the method includes decompressing the one or more code tables included in the encoded data (E2).
More optionally, the method includes decompressing the one or more code tables by employing Huffman decoding.
More optionally, in the method, decompression of the one or more code tables employs one or more subsidiary code
tables.

[0166] Optionally, the method includes receiving the one or more code tables in manner which enables the one or
more code tables to be employed in the decoder (60) for decoding subsequently sent data.

[0167] Optionally,the method includes extracting from the encoded data (E2) one or more identification codes indicating
from where the one or more code table are susceptible to being accessed, via one or more databases, and/or one or
more proxy databases.

[0168] Optionally, the method includes decoding one or more of following types of data: captured audio signals,
captured video signals, captured images, text data, seismographic data, sensor signals, analog-to-digital (ADC) con-
verted data, biomedical signal data, calendar data, economic data, mathematical data, binary data.

[0169] Optionally, the method includes receiving the encoded data (E2) from a plurality of data sources, and to combine
data provided from the sources to regenerate the encoded data (E2).

[0170] The decoder 60 is operable to implement the aforementioned method of decoding the encoded data (E2) to
generate the decoded data (D3); there is provided a decoder 60 for decoding the encoded data (E2) generated by the
encoder 50, wherein the decoder 60 is operable:

(i) to receive the encoded data (E2) and to extract therefrom one or more sets of indices, together with one or more
frequency tables, and/or one or more code tables, and/or one or more length of code word tables, and/or one or
more probability tables, and/or information indicative of such one or more tables;

(i) to compute from the one or more sets of indices corresponding symbols in one or more data chunks and/or
compressed symbols of entries in the one or more code tables, and/or the one or more frequency tables, and/or the
one or more length of code word tables, and/or one or more probability tables; and

(iii) to regenerate from the symbols one or more data chunks, using information from the one or more code tables,
and/or one or more frequency tables, and/or one or more length of code word tables, and/or one or more probability
tables; and

(iv) to combine and/or transform the one or more data chunks to generate the decoded data (D3).

[0171] Optionally, the decoder 60 further includes a transcoder 70 for transcoding the decoded data (D3) to generate
corresponding transcoded data (D4) and/or generating the corresponding transcoded data (D4) from the encoded data
(E2).

[0172] Optionally, the decoder 60 is operable to receive at least one of the one or more tables in a manner in which
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the at least one of the one or more tables is storable for subsequent reuse.

[0173] Optionally, the decoder 60 is operable to apply one or more data decompression algorithms in step (iv) to
generate the decoded data (D3). More optionally, in the decoder 60, the one or more data decompression algorithms
includes at least one of: Huffman decoding, VLC decoding, entropy decoding, Arithmetic decoding, Range decoding.
[0174] Optionally, the decoder 60 is operable to combine a plurality of the one or more data chunks to generate he
decoded data (D3) by employing a parallel architecture of processors for processing the plurality of data chunks in a
substantially concurrent manner.

[0175] Optionally, the decoder 60 is operable to generate the one or more sets of indices based on multiple data
values that are combined together. More optionally, in the decoder 60, the indices are derived from one or more RGB-
pixels that contain R, G and B pixel values or Y, U and V pixel values. More optionally, the decoder 60 is operable to
switch dynamically between generating the one or more data chunks either unencoded or encoded into the encoded
data (E2), as a function of an achievable data decompression ratio for the data chunks when included in the encoded
data (E2).

[0176] Optionally, the decoder 60 is operable to extract from the encoded data (E2) at least one trailing bit which is
indicative of if a symbol pertains to "change of code table" or to "end of data".

[0177] Optionally, the decoder 60 is operable to generate a given data chunk substantially from only enough indices
required for referencing to one or more symbols present in the given data chunk.

[0178] Optionally, the decoder 60 is operable to decompress the one or more code tables included in the encoded
data (E2). More optionally, the decoder 60 is operable to decompress the one or more code tables by employing Huffman
decoding. More optionally, in the decoder 60, decompression of the one or more code tables employs one or more
subsidiary code tables.

[0179] Optionally, the decoder 60 is operable to receive the one or more code tables in manner which enables the
one or more code tables to be employed in the decoder (60) for decoding subsequently sent data.

[0180] Optionally, the decoder 60 is operable to extract from the encoded data (E2) one or more identification codes
indicating from where the one or more code table are susceptible to being accessed, via one or more databases, and/or
one or more proxy databases.

[0181] Optionally, the decoder 60 is operable to decode one or more of following types of data: captured audio signals,
captured video signals, captured images, text data, seismographic data, sensor signals, analog-to-digital (ADC) con-
verted data, biomedical signal data, calendar data, economic data, mathematical data, binary data.

[0182] Optionally, the decoder 60 is operable to receive the encoded data (E2) from a plurality of data sources, and
to combine data provided from the sources to regenerate the encoded data (E2). For example, the plurality of sources
are included in a peer-to-peer data communication network which communicates the encoded data (E2) from the encoder
50 to the decoder 60.

[0183] Modifications to embodiments of the invention described in the foregoing are possible without departing from

the scope of the invention as defined by the accompanying claims. Expressions such as "including", "comprising",
"incorporating", "consisting of, "have", "is" used to describe and claim the present invention are intended to be construed
in a non-exclusive manner, namely allowing for items, components or elements not explicitly described also to be present.
Reference to the singular is also to be construed to relate to the plural. Numerals included within parentheses in the
accompanying claims are intended to assist understanding of the claims and should not be construed in any way to limit

subject matter claimed by these claims.

Claims

1. A method of encoding input data (D1) in an encoder (50) to generate corresponding encoded data (E2), wherein
the method includes:

(a) analyzing symbols present in the input data (D1) and splitting and/or transforming the input data (D1) into
one or more data chunks;

(b) generating as a function of occurrence of the symbols at least one of: one or more code tables, one or more
frequency tables, one or more length of code word tables, one or more probability tables for the symbols present
in the one or more data chunks;

(c) computing one or more sets of indices relating the symbols in each data chunk to entries in at least one of:
the one or more code tables, the one or more frequency tables, the one or more length of code word tables,
the one or more probability tables;

characterized in that the method further comprises:
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(d) compressing the symbols within the one or more tables; and

(e) assembling the corresponding symbols within the one or more tables and information of the one or more
sets of indices relating the symbols in each data chunk, together with at least one of: the one or more frequency
tables, the one or more code tables, the one or more length of code word tables, the one or more probability
tables, information indicative of the one or more tables, to the encoded data (E2).

The method as claimed in claim 1, characterized in that at least one of the one or more tables is pre-defined.

The method as claimed in claim 1 or 2, characterized in that the method includes delivering the encoded data (E2)
containing the information of the one or more sets of indices relating the symbols in each data chunk, together with
at least one of: the one or more frequency tables, the one or more code tables, the one or more length of code word
tables, the one or more probability tables, the information indicative of the one or more tables as well as the com-
pressed symbols.

The method as claimed in claim 1, 2, or 3, characterized in that the method includes delivering at least one of the
one or more tables in a manner in which the at least one of the one or more tables is storable for subsequent reuse.

The method as claimed in claim 1, 2 or 3, characterized in that the information of the one or more sets of indices
includes:

(i) indices of the symbols that occur in the chunk as such, and of which probability values are to be inserted into
the encoded data (E2), preceded by a total count of indices in the data chunk; or

(ii) bits expressing which symbols out of all possible symbol values occur in the chunk and for which symbols
probability values are to be inserted into the encoded data (E2); or

(i) information stating that starting from the beginning, all symbol value probabilities to be inserted into the
encoded data (E2), which in itself also expresses the count of indices.

The method as claimed in any one of claims 1 to 5, characterized in that the method includes splitting the input
data (D1) into a plurality of data chunks and employing a parallel architecture of processors for processing the
plurality of data chunks in a concurrent manner.

The method as claimed in claim 5 or 6, characterized in that the method includes dynamically switching between
assembling the data chunks either unencoded or encoded into the encoded data (E2), as a function of an achievable
data compression ratio for the data chunks when included in the encoded data (E2).

The method as claimed in any one of claims 1 to 7, characterized in that the method further includes compressing
the one or more code tables for inclusion in the encoded data (E2).

The method as claimed in any one of claims 1 to 8, characterized in that the method includes communicating the
one or more code tables in a manner which enables the one or more code tables to be employed in a decoder for
decoding subsequently sent data.

The method as claimed in any one of claims 1 to 9, characterized in that the method includes a step of including
in the encoded data (E2) one or more identification codes indicating from where the one or more code table are
susceptible to being accessed, via one or more databases, and/or one or more proxy databases.

An encoder (50) for encoding input data (D1) to generate corresponding encoded data (E2), wherein the encoder
includes:

(a) an analyzer for analyzing symbols present in the input data (D 1), and for splitting and/or transforming the
input data (D1) into one or more data chunks;

(b) a generator for generating, as a function of occurrence of the symbols at least

one of: one or more code tables, one or more frequency tables, one or more length of code word tables, one
or more probability tables for the symbols present in the one or more data chunks;

(c) a computing engine for computing one or more sets of indices relating the symbols in each data chunk to
entries in at least

one of: the one or more code tables, the one or more frequency tables, the one or more length of code word
tables, the one more probability tables;
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characterized in that the encoder further comprises:

(d) a compressor for compressing the symbols within the one or more tables; and

(e) a data assembler for assembling the corresponding symbols within the one or more tables and information
of the one or more sets of indices relating the symbols in each data chunk, together with at least one of: the
one or more frequency tables, the one or more code tables, the one or more length of code word tables, the
one or more probability tables information indicative of the one or more tables, to the encoded data (E2).

A computer program product comprising a non-transitory computer-readable storage medium having computer-
readable instructions stored thereon, the computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method as claimed in any one of claims 1 to 10.

A method in a decoder (60) of decoding encoded data (E2) generated by the encoder (50) as claimed in claim 11,
for generating corresponding decoded data (D3), characterized in that the method includes:

(i) receiving the encoded data (E2) and extracting therefrom information of one or more sets of indices, together
with at least one of: one or more frequency tables, one or more code tables, one or more length of code word
tables, one or more probability tables, information indicative of the one or more tables;

(ii) computing from the one or more sets of indices corresponding symbols in at least one of: one or more data
chunks, compressed symbols of entries in the one or more code tables, the one or more frequency tables, the
one or more length of code word tables, the one or more probability tables;

(i) regenerating from the symbols one or more data chunks, using information from at least one of: the one or
more code tables, the one or more frequency tables, the one or more length of code word tables, the one or
more probability tables; and

(iv) combining and/or transforming the one or more data chunks to generate the decoded data (D3).

The method as claimed in claim 13, characterized in that at least one of the one or more tables is pre-defined.

The method as claimed in claim 13, characterized in that the method includes transcoding the decoded data (D3)
to generate corresponding transcoded data (D4) and/or generating the corresponding transcoded data (D4) from
the encoded data (E2).

The method as claimed in claim 13, 14 or 15, characterized in that the method includes receiving at least one of
the one or more tables in a manner in which the at least one of the one or more tables is storable for subsequent reuse.

The method as claimed in claim 13, characterized in that the method includes combining a plurality of the one or
more data chunks to generate the decoded data (D3) by employing a parallel architecture of processors for processing
the plurality of data chunks in a concurrent manner.

The method as claimed in claim 17, characterized in that the method includes switching dynamically between
generating the one or more data chunks either unencoded or encoded into the encoded data (E2), as a function of
an achievable data decompression ratio for the data chunks when included in the encoded data (E2).

The method as claimed in any one of claims 13 to 18, characterized in that the method includes decompressing
the one or more code tables included in the encoded data (E2).

The method as claimed in any one of claims 13 to 19, characterized in that the method includes receiving the one
or more code tables in a manner which enables the one or more code tables to be employed in the decoder (60)
for decoding subsequently sent data.

The method as claimed in any one of claims 13 to 20, characterized in that the method includes extracting from
the encoded data (E2) one or more identification codes indicating from where the one or more code table are
susceptible to being accessed, via one or more databases, and/or one or more proxy databases.

The method as claimed in any one of claims 13 to 21, characterized in that the method includes receiving the

encoded data (E2) from a plurality of data sources, and to combine data provided from the sources to regenerate
the encoded data (E2).
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23. A decoder (60) for decoding encoded data (E2) generated by the encoder (50) as claimed in any one of claims 11
to 15, for generating corresponding decoded data (D3), characterized in that the decoder (60) is operable:

(i) to receive the encoded data (E2) and to extract therefrom information of one or more sets of indices, together
with at least one of: one or more frequency tables, one or more code tables, one or more length of code word
tables, one or more probability tables, information indicative of the one or more tables;

(i) to compute from the one or more sets of indices corresponding symbols in at least one of: one or more data
chunks, compressed symbols of entries in the one or more code tables, the one or more frequency tables, the
one or more length of code word tables, the one or more probability tables;

(iii) to regenerate from the symbols one or more data chunks, using information from at least one of: the one
or more code tables, the one or more frequency tables, the one or more length of code word tables, the one or
more probability tables; and

(iv) to combine and/or transform the one or more data chunks to generate the decoded data (D3).

24. A codec (100) characterized in that the codec (100) includes at least one encoder (50) as claimed in claim 11 for
encoding input data (D1) to generate corresponding encoded data (E2), and at least one decoder (60) as claimed
in claim 23 for decoding the encoded data (E2) to generate decoded output data (D3).

25. The codec (100) as claimed in claim 24, characterized in that the at least one encoder (50) and the at least one
decoder (60) are mutually spatially remote and mutually coupled together via a data communication network.

26. The codec (100) as claimed in claim 25, characterized in that the data communication network is configured in a
manner of a peer-to-peer communication network.

27. Thecodec (100) as claimed in claim 26, characterized in that the encoder (50) and the decoder (60) are symmetrical
in their processing of data therethrough.

Patentanspriiche

1. Verfahren zum Kodieren von Eingangsdaten (D1) in einem Kodierer (50), um entsprechende kodierte Daten (E2)
zu erzeugen, wobei das Verfahren umfasst:

(a) Analysieren von Symbolen, die in den Eingangsdaten (D1) vorhanden sind, und Aufteilen und/oder Trans-
formieren der Eingangsdaten (D1) in einen oder mehrere Datenbldcke;

(b) als Funktion eines Auftretens der Symbole Erzeugen von mindestens einer von Folgenden: einer oder
mehreren Kodetabellen, einer oder mehreren Frequenztabellen, einer oder mehreren Kodewortldnge-Tabellen,
einer oder mehreren Wahrscheinlichkeitstabellen fiir die Symbole, die in dem einen oder den mehreren Daten-
blécken vorhanden sind;

(c) Berechnen von einem oder mehreren Satzen von Indizes, die sich auf die Symbole in jedem Datenblock
beziehen, in Eintrdge in mindestens eine von Folgenden: die eine oder die mehreren Kodetabellen, die eine
oder die mehreren Frequenztabellen, die eine oder die mehreren Kodewortldnge-Tabellen, die eine oder die
mehreren Wahrscheinlichkeitstabellen;

dadurch gekennzeichnet, dass das Verfahren ferner umfasst:

(d) Komprimieren der Symbole innerhalb der einen oder der mehreren Tabellen; und

(e) Zusammensetzen der entsprechenden Symbole innerhalb der einen oder der mehreren Tabellen und der
Informationen des einen oder der mehreren Satze von Indizes, die sich auf die Symbole in jedem Datenblock
beziehen, zusammen mit mindestens einer von Folgenden: der einen oder den mehreren Frequenztabellen,
der einen oder den mehreren Kodetabellen, der einen oder den mehreren Kodewortlange-Tabellen, der einen
oder den mehreren Wahrscheinlichkeitstabellen, Informationen, die anzeigend sind fiir die eine oder die meh-
reren Tabellen, zu den kodierten Daten (E2).

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine der einen oder mehreren Tabellen
vordefiniert wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verfahren ein Ubermitteln der kodierten
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Daten (E2), die die Informationen des einen oder der mehreren Satze von Indizes enthalten, die sich auf die Symbole
in jedem Datenblock beziehen, zusammen mit mindestens einer von Folgenden umfasst: der einen oder den meh-
reren Frequenztabellen, der einen oder den mehreren Kodetabellen, der einen oder den mehreren Kodewortlange-
Tabellen, der einen oder den mehreren Wahrscheinlichkeitstabellen, den Informationen, die anzeigend sind fir die
eine oder die mehreren Tabellen, wie auch den komprimierten Symbolen.

Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Verfahren ein Ubermitteln von mindes-
tens einer der einen oder der mehreren Tabellen auf eine Weise umfasst, dass die mindestens eine der einen oder
der mehreren Tabellen zur nachfolgenden Wiederverwendung speicherbar ist.

Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Informationen des einen oder der
mehreren Séatze von Indizes umfassen:

(i) Indizes der Symbole, die in dem Block als solchem auftreten, und von welchen Wahrscheinlichkeitswerte in
die kodierten Daten (E2) einzufligen sind, wobei eine Gesamizahl von Indizes in dem Datenblock vorausgeht;
oder

(ii) Bits, die ausdriicken, welche Symbole von séamtlichen méglichen Symbolwerten in dem Block auftreten und
fur welche Symbolwahrscheinlichkeiten in die kodierten Daten (E2) einzufligen sind; oder

(iii) Informationen, die darlegen, dass von Beginn an sdmtliche Symbolwert-Wahrscheinlichkeiten in die kodier-
ten Daten (E2) einzufiigen sind, was selbst auch die Zahl von Indizes ausdriickt.

Verfahren nach einem der Anspriiche 1 bis 5, dadurch gekennzeichnet, dass das Verfahren ein Aufteilen der
Eingangsdaten (D1) in eine Mehrzahl von Datenbldcken und ein Einsetzen einer parallelen Architektur von Prozes-
soren zum Verarbeiten der Mehrzahl von Datenblécken auf eine gleichzeitige Weise umfasst.

Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Verfahren ein dynamisches Umschalten
zwischen einem Einsetzen der Datenblécke entweder unkodiert oder kodiert in die kodierten Daten (E2) als Funktion
eines erreichbaren Datenkompressionsverhéltnisses flir die Datenblocke umfasst, wenn sie in den kodierten Daten
(E2) enthalten sind.

Verfahren nach einem der Anspriiche 1 bis 7, dadurch gekennzeichnet, dass das Verfahren ferner ein Kompri-
mieren der einen oder der mehreren Kodetabellen zum Aufnehmen in die kodierten Daten (E2) umfasst.

Verfahren nach einem der Anspriiche 1 bis 8, dadurch gekennzeichnet, dass das Verfahren ein Ubertragen der
einen oder der mehreren Kodetabellen auf eine Weise umfasst, welche es ermdglicht, dass die eine oder die
mehreren Kodetabellen in einem Dekoder zum Dekodieren nachfolgend gesendeter Daten eingesetzt werden.

Verfahren nach einem der Anspriiche 1 bis 9, dadurch gekennzeichnet, dass das Verfahren einen Schritt eines
Aufnehmens, in die kodierten Daten (E2), von einem oder mehreren Identifikationskodes umfasst, die anzeigen,
von wo auf die eine oder die mehreren Kodetabellen zugegriffen werden kann, iber eine oder mehrere Datenbanken
und/oder eine oder mehrere Proxy-Datenbanken.

Kodierer (50) zum Kodieren von Eingangsdaten (D1), um entsprechende kodierte Daten (E2) zu erzeugen, wobei
der Kodierer umfasst:

(a) einen Analysator zum Analysieren von Symbolen, die in den Eingangsdaten (D1) vorhanden sind, und zum
Aufteilen und/oder zum Transformieren der Eingangsdaten (D1) in einen oder mehrere Datenblécke;

(b) einen Generator zum Erzeugen, als Funktion eines Auftretens der Symbole, von mindestens einer von
Folgenden: einer oder mehreren Kodetabellen, einer oder mehreren Frequenztabellen, einer oder mehreren
Kodewortldnge-Tabellen, einer oder mehreren Wahrscheinlichkeitstabellen fiir die Symbole, die in dem einen
oder den mehreren Datenbldcken vorhanden sind;

(c) einem Berechnungsmittel zum Berechnen von einem oder mehreren Satzen von Indizes, die sich auf die
Symbole in jedem Datenblock beziehen, in Eintrage in mindestens eine von Folgenden: die eine oder die
mehreren Kodetabellen, die eine oder die mehreren Frequenztabellen, die eine oder die mehreren Kodewort-
lange-Tabellen, die eine oder die mehreren Wahrscheinlichkeitstabellen; dadurch gekennzeichnet, dass der
Kodierer ferner umfasst:

(d) einen Kompressor zum Komprimieren der Symbole innerhalb der einen oder der mehreren Tabellen; und

25



10

15

20

25

30

35

40

45

50

55

12.

13.

14.

15.

16.

17.

18.

19.

20.

EP 3 108 584 B1

(e) einen Datenassembler zum Zusammensetzen der entsprechenden Symbole innerhalb der einen oder
der mehreren Tabellen und der Informationen des einen oder der mehreren Satze von Indizes, die sich auf
die Symbole in jedem Datenblock beziehen, zusammen mit mindestens einer von Folgenden: der einen
oder den mehreren Frequenztabellen, der einen oder den mehreren Kodetabellen, der einen oder den
mehreren Kodewortldnge-Tabellen, der einen oder den mehreren Wahrscheinlichkeitstabellen, Informati-
onen, die anzeigend sind fir die eine oder die mehreren Tabellen, zu den kodierten Daten (E2).

Computerprogrammprodukt, umfassend ein nichtfliichtiges computerlesbares Speichermedium mit darauf gespei-
cherten computerlesbaren Befehlen, wobei die computerlesbaren Befehle von einer Computereinrichtung ausfiihr-
barsind, die eine Verarbeitungshardware umfasst, um ein Verfahren nach einem der Anspriiche 1 bis 10 auszufiihren.

Verfahren in einem Dekoder (60) zum Dekodieren von kodierten Daten (E2), die von dem Kodierer (50) nach der
Anspriiche 11 erzeugt werden, zum Erzeugen von entsprechenden dekodierten Daten (D3), dadurch gekenn-
zeichnet, dass das Verfahren umfasst:

(i) Empfangen der kodierten Daten (E2) und daraus Extrahieren von Informationen von einem oder mehreren
Satzen von Indizes, zusammen mit mindestens einer von Folgenden: einer oder mehreren Frequenztabellen,
einer oder mehreren Kodetabellen, einer oder mehreren Kodewortlange-Tabellen, einer oder mehreren Wahr-
scheinlichkeitstabellen, Informationen, die anzeigend sind fiir die eine oder die mehreren Tabellen;

(ii) Berechnen, aus dem einen oder den mehreren Satzen von Indizes, von entsprechenden Symbolen in min-
destens einem von Folgenden: einem oder mehreren Datenblécken, komprimierten Symbolen von Eintrégen
in der einen oder den mehreren Kodetabellen, der einen oder den mehreren Frequenztabellen, der einen oder
den mehreren Kodewortlange-Tabellen, der einen oder den mehreren Wahrscheinlichkeitstabellen ;

(iii) Regenerieren von einem oder mehreren Datenblécken aus den Symbolen unter Verwendung von Informa-
tionen aus mindestens einer von Folgenden: der einen oder den mehreren Kodetabellen, der einen oder den
mehreren Frequenztabellen, der einen oder den mehreren Kodewortlange-Tabellen, der einen oder den meh-
reren Wahrscheinlichkeitstabellen; und

(iv) Kombinieren und/oder Transformieren des einen oder der mehreren Datenblécke, um die dekodierten Daten
(D3) zu erzeugen.

Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass mindestens eine der einen oder mehreren Tabellen
vordefiniert wird.

Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Verfahren ein Transkodieren der dekodierten
Daten (D3), um entsprechende transkodierte Daten (D4) zu erzeugen, und/oder ein Erzeugen der entsprechenden
transkodierten Daten (D4) aus den kodierten Daten (E2) umfasst.

Verfahren nach Anspruch 13, 14 oder 15, dadurch gekennzeichnet, dass das Verfahren ein Empfangen von
mindestens einer der einen oder mehreren Tabellen auf eine Weise umfasst, dass die mindestens eine der einen
oder der mehreren Tabellen zur nachfolgenden Wiederverwendung speicherbar ist.

Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Verfahren ein Kombinieren einer Mehrzahl des
einen und der mehreren Datenblécke umfasst, um die dekodierten Daten (D3) durch Einsetzen einer parallelen
Architektur von Prozessoren zum Verarbeiten der Mehrzahl von Datenblécken auf eine gleichzeitige Weise zu
erzeugen.

Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Verfahren ein dynamisches Umschalten zwi-
schen einem Erzeugen des einen oder der mehreren Datenbldcke entweder unkodiert oder kodiert in die kodierten
Daten (E2) als Funktion eines erreichbaren Datenkompressionsverhéltnisses fir die Datenblécke umfasst, wenn
sie in den kodierten Daten (E2) enthalten sind.

Verfahren nach einem der Anspriiche 13 bis 18, dadurch gekennzeichnet, dass das Verfahren ein Dekomprimieren
der einen oder mehreren Kodetabellen umfasst, die in den kodierten Daten (E2) enthalten sind.

Verfahren nach einem der Anspriiche 13 bis 19, dadurch gekennzeichnet, dass das Verfahren ein Empfangen
der einen oder mehreren Kodetabellen auf eine Weise umfasst, welche es ermdglicht, dass die eine oder die
mehreren Kodetabellen in dem Dekoder (60) zum Dekodieren nachfolgend gesendeter Daten eingesetzt werden
kénnen.
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Verfahren nach einem der Anspriiche 13 bis 20, dadurch gekennzeichnet, dass das Verfahren ein Extrahieren,
aus den kodierten Daten (E2), von einem oder mehreren ldentifikationskodes umfasst, die anzeigen, von wo auf
die eine oder die mehreren Kodetabellen zugegriffen werden kann, Gber eine oder mehrere Datenbanken und/oder
eine oder mehrere Proxy-Datenbanken.

Verfahren nach einem der Anspriiche 13 bis 21, dadurch gekennzeichnet, dass das Verfahren ein Empfangen
der kodierten Daten (E2) aus einer Mehrzahl von Datenquellen und ein Kombinieren von Daten umfasst, die von
den Quellen bereitgestellt werden, um die kodierten Daten (E2) zu regenerieren.

Dekoder (60) zum Dekodieren von kodierten Daten (E2), die von dem Kodierer (50) nach einem der Anspriiche 11
bis 15 erzeugt werden, zum Erzeugen entsprechender dekodierten Daten (D3), dadurch gekennzeichnet, dass
der Dekoder (60) betriebsfahig ist:

(i) die kodierten Daten (E2) zu empfangen und daraus Informationen von einem oder mehreren Satzen von
Indizes, zusammen mit mindestens einer von Folgenden zu extrahieren: einer oder mehreren Frequenztabellen,
einer oder mehreren Kodetabellen, einer oder mehreren Kodewortlange-Tabellen, einer oder mehreren Wahr-
scheinlichkeitstabellen, Informationen, die anzeigend sind fiir die eine oder die mehreren Tabellen;

(ii) aus dem einen oder den mehreren Satzen von Indizes entsprechende Symbole in zumindest einem von
Folgenden zu berechnen: einem oder mehreren Datenblécken, komprimierten Symbolen von Eintragen in der
einen oder den mehreren Kodetabellen, der einen oder den mehreren Frequenztabellen, der einen oder den
mehreren Kodewortldnge-Tabellen, der einen oder den mehreren Wahrscheinlichkeitstabellen ;

(iii) einen oder mehrere Datenblécke aus den Symbolen unter Verwendung von Informationen von mindestens
einer von Folgenden zu regenerieren: der einen oder den mehreren Kodetabellen, der einen oder den mehreren
Frequenztabellen, der einen oder den mehreren Kodewortlange-Tabellen, der einen oder den mehreren Wahr-
scheinlichkeitstabellen; und

(iv) den einen oder die mehreren Datenbldcke zu kombinieren oder zu transformieren, um die dekodierten
Daten (D3) zu erzeugen.

Codec (100), dadurch gekennzeichnet, dass der Codec (100) mindestens einen Kodierer (50) nach Anspruch 11
zum Kodieren von Eingangsdaten (D1), um entsprechende kodierte Daten (E2) zu erzeugen, und mindestens einen
Dekoder (60) nach Anspruch 23 zum Dekodieren der kodierten Daten (E2) umfasst, um dekodierte Ausgangsdaten
(D3) zu erzeugen.

Codec (100) nach Anspruch 24, dadurch gekennzeichnet, dass der mindestens eine Kodierer (50) und der min-
destens eine Dekoder (60) wechselweise rdumlich entfernt und wechselweise miteinander iber ein Datenkommu-
nikationsnetz gekoppelt sind.

Codec (100) nach Anspruch 25, dadurch gekennzeichnet, dass das Datenkommunikationsnetz in der Art eines
Peer-to-Peer-Kommunikationsnetzes ausgelegt ist.

Codec (100) nach Anspruch 26, dadurch gekennzeichnet, dass der Kodierer (50) und der Dekoder (60) in ihrer
Verarbeitung von Daten symmetrisch sind.

Revendications

1.

Procédé de codage de données d’entrée (D1) dans un codeur (50) permettant de générer des données codées
correspondantes (E2), dans lequel le procédé consiste a :

(a) analyser des symboles présents dans les données d’entrée (D1) et diviser et/ou transformer les données
d’entrée (D1) en un ou plusieurs fragments de données ;

(b) générer comme une fonction d’occurrence des symboles au moins une table parmi : une ou plusieurs tables
de code, une ou plusieurs tables de fréquence, une ou plusieurs tables de longueur de mots de code, une ou
plusieurs tables de probabilité pour les symboles présents dans I'un ou les fragments de données ;

(c) calculer un ou plusieurs ensembles d’indices reliant les symboles dans chaque fragment de données a des
entrées dans au moins une table parmi : la ou les tables de code, la ou les tables de fréquence, la ou les tables
de longueur de mots de code, la ou les tables de probabilité ;
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caractérisé en ce que le procédé consiste en outre a :

(d) compresser les symboles dans la ou les tables ; et

(e) assembler les symboles correspondants dans la ou les tables et les informations de I'un ou des ensembles
d’indices reliant les symboles dans chaque fragment de données, conjointement avec au moins un élément
parmi : la ou les tables de fréquence, la ou les tables de code, la ou les tables de longueur de mots de code,
la ou les tables de probabilité, des informations indiquant la ou les tables, aux données codées (E2).

Procédé selon la revendication 1, caractérisé en ce qu’au moins une de la ou des tables est prédéfinie.

Procédé selon la revendication 1 ou 2, caractérisé en ce que le procédé consiste a distribuer les données codées
(E2) contenant les informations de I'un ou des ensembles d’indices reliant les symboles dans chaque fragment de
données, conjointement avec au moins un élément parmi : : la ou les tables de fréquence, la ou les tables de code,
la ou les tables de longueur de mots de code, la ou les tables de probabilité, des informations indiquant la ou les
tables ainsi que les symboles compressés.

Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que le procédé consiste a fournir au moins une table
parmilaoulestables de sorte que 'aumoins une de la ou des tables peut étre stockée pour une réutilisation ultérieure.

Procédé selon larevendication 1, 2 ou 3, caractérisé en ce que les informations de I'un ou des ensembles d’indices
comprennent :

(i) des indices des symboles qui se produisent dans le fragment en tant que tel, et dont les valeurs de probabilité
doivent étre insérées dans les données codées (E2), précédés par un compte total d’indices dans le fragment
de données ; ou

(ii) des bits exprimant quels symboles sur toutes les valeurs de symboles possibles se produisent dans le
fragment et pour quels symboles des valeurs de probabilité doivent étre insérées dans les données codées
(E2) ; ou

(i) des informations indiquant, a partir du début, toutes les probabilités de valeurs de symboles a insérer dans
les données codées (E2), qui en elles-mémes expriment également le compte d’indices.

Procédeé selon 'une quelconque des revendications 1 a 5, caractérisé en ce que le procédé consiste a diviser les
donnéesd’entrée (D1) en une pluralité de fragments de données et a utiliser une architecture paralléle de processeurs
pour traiter la pluralité de fragments de données de maniére simultanée.

Procédé selon la revendication 5 ou 6, caractérisé en ce que le procédé consiste a commuter dynamiquement
entre 'assemblage des fragments de données soit non codés, soit codés dans les données codées (E2), comme
une fonction d’un rapport de compression de données pouvant étre atteint pour les fragments de données lorsqu’ils
sont inclus dans les données codées (E2).

Procédeé selon 'une quelconque des revendications 1 a 7, caractérisé en ce que le procédé consiste en outre a
compresser la ou les tables de code pour une inclusion dans les données codées (E2).

Procédeé selon 'une quelconque des revendications 1 a 8, caractérisé en ce que le procédé consiste en outre a
communiquer la ou les tables de code d’'une maniére qui permet a la ou les tables de code d’étre utilisées dans un
décodeur pour décoder des données envoyées ultérieurement.

Procédeé selon I'une quelconque des revendications 1 a 9, caractérisé en ce que le procédé comprend une étape
consistant a inclure dans les données codées (E2) un ou plusieurs codes d’identification indiquant a partir d’'ou on
est susceptible d’accéder a la ou aux tables de code, par le biais d’'une ou plusieurs bases de données, et/ou d’'une
ou plusieurs bases de données mandataires.

Codeur (50) permettant de coder des données d’entrée (D1) pour générer des données codées correspondantes
(E2), dans lequel le codeur (50) comprend:

(a) un analyseur permettant d’analyser des symboles présents dans les données d’entrée (D1), et de diviser

et/ou transformer les données d’entrée (D1) en un ou plusieurs fragments de données ;
(b) un générateur permettant de générer, comme une fonction d’occurrence des symboles au moins une table
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parmi : une ou plusieurs tables de code, une ou plusieurs tables de fréquence, une ou plusieurs tables de
longueur de mots de code, une ou plusieurs tables de probabilité pour les symboles présents dans I'un ou les
fragments de données ;

(c) un moteur de calcul permettant de calculer un ou plusieurs ensembles d’indices reliant les symboles dans
chaque fragment de données a des entrées dans au moins une table parmi : la ou les tables de code, la ou les
tables de fréquence, la ou les tables de longueur de mots de code, la ou les tables de probabilité ;

caractérisé en ce que le codeur (50) comprend en outre :

(d) un compresseur permettant de compresser les symboles dans la ou les tables ; et

(e) un assembleur de données permettant d’assembler les symboles correspondants dans la ou les tables et
les informations de I'un ou des ensembles d’indices reliant les symboles dans chaque fragment de données,
conjointement avec au moins un élément parmi : la ou les tables de fréquence, la ou les tables de code, la ou
les tables de longueur de mots de code, la ou les tables de probabilité, des informations indiquant la ou les
tables, aux données codées (E2).

Produit de programme informatique comprenant un support de stockage lisible par ordinateur non transitoire ayant
des instructions lisibles par ordinateur qui y sont stockées, les instructions lisibles par ordinateur pouvant étre
exécutées par un dispositif informatique comprenant un matériel de traitement pour exécuter un procédé selon 'une
quelconque des revendications 1 a 10.

Procédé dans un décodeur (60) de décodage de données codées (E2) générées par le codeur (50) selon le reven-
dication 11, permettant de générer des données décodées correspondantes (D3), caractérisé en ce que le procédé
consiste a :

(i) recevoir les données codées (E2) et extraire des informations de celles-ci d’'un ou plusieurs ensembles
d’indices, conjointement avec au moins un élément parmi: une ou plusieurs tables de fréquence, une ou
plusieurs tables de code, une ou plusieurs tables de longueur de mots de code, une ou plusieurs tables de
probabilité, des informations indiquant la ou les tables ;

(i) calculer a partir du ou des ensembles d’indices des symboles correspondants dans au moins un élément
parmi : un ou plusieurs fragments de données, des symboles d’entrées compressés dans la ou les tables de
code, la ou les tables de fréquence, la ou les tables de longueur de mots de code, la ou les tables de probabilité ;
(i) regénérer a partir des symboles un ou plusieurs fragments de données, a 'aide des informations provenant
au moins d’une table parmi : la ou les tables de code, la ou les tables de fréquence, la ou les tables de longueur
de mots de code, la ou les tables de probabilité ; et

(iv) combiner et/ou transformer le ou les fragments de données pour générer les données décodées (D3).

Procédé selon la revendication 13, caractérisé en ce qu’au moins une table parmi la ou les tables est prédéfinie.

Procédé selon la revendication 13, caractérisé en ce que le procédé consiste a transcoder les données décodées
(D3) pour générer des données transcodées correspondantes (D4) et/ou générer les données transcodées corres-
pondantes (D4) a partir des données codées (E2).

Procédé selon la revendication 13, 14 ou 15, caractérisé en ce que le procédé consiste a recevoir au moins une
table parmi la ou les tables de sorte que I'au moins une de la ou des tables peut étre stockée pour une réutilisation
ultérieure.

Procédé selon la revendication 13, caractérisé en ce que le procédé consiste a combiner une pluralité de I'un ou
des fragments de données pour générer les données décodées (D3) en utilisant une architecture parallele de
processeurs pour ftraiter la pluralité de fragments de données de maniere simultanée.

Procédé selon la revendication 17, caractérisé en ce que le procédé consiste a commuter dynamiquement entre
la génération de I'un ou des plusieurs fragments de données soit non codés, soit codés dans les données codées
(E2), comme une fonction d’'un rapport de décompression de données pouvant étre atteint pour les fragments de
données lorsqu'’ils sont inclus dans les données codées (E2).

Procédeé selon 'une quelconque des revendications 13 a 18, caractérisé en ce que le procédé consiste a décom-
presser la ou les tables de code comprises dans les données codées (E2).
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Procédé selon I'une quelconque des revendications 13 a 19, caractérisé en ce que le procédé consiste a recevoir
la ou les tables de code d’'une maniére qui permet a la ou les tables de code d’étre utilisées dans le décodeur (60)
pour décoder des données envoyées ultérieurement.

Procédé selon I'une quelconque des revendications 13 a 20, caractérisé en ce que le procédé consiste a extraire
a partir des données codées (E2) un ou plusieurs codes d’identification indiquant a partir d’'ou on est susceptible
d’accéder a la ou aux tables de code, par le biais d’'une ou plusieurs bases de données, et/ou d’une ou plusieurs
bases de données mandataires.

Procédé selon I'une quelconque des revendications 13 a 21, caractérisé en ce que le procédé consiste a recevoir
les données codées (E2) a partir d’'une pluralité de sources de données, et a combiner les données fournies depuis
les sources pour régénérer les données codées (E2).

Décodeur (60) permettant de décoder des données codées (E2) générées par le codeur (50) selon 'une quelconque
des revendications 11 a 15, permettant de générer des données décodées correspondantes (D3), caractérisé en
ce que le décodeur (60) fonctionne de maniere a :

(i) recevoir les données codées (E2) et extraire des informations de celles-ci d’'un ou plusieurs ensembles
d’'indices, conjointement avec au moins un élément parmi : une ou plusieurs tables de fréquence, une ou
plusieurs tables de code, une ou plusieurs tables de longueur de mots de code, une ou plusieurs tables de
probabilité, des informations indiquant la ou les tables ;

(i) calculer a partir du ou des ensembles d’indices des symboles correspondants dans au moins un élément
parmi : un ou plusieurs fragments de données, des symboles d’entrées compressés dans la ou les tables de
code, la ou les tables de fréquence, la ou les tables de longueur de mots de code, la ou les tables de probabilité ;
(i) régénérer a partir des symboles un ou plusieurs fragments de données, a 'aide des informations provenant
au moins d’une table parmi : la ou les tables de code, la ou les tables de fréquence, la ou les tables de longueur
de mots de code, la ou les tables de probabilité ; et

(iv) combiner et/ou transformer le ou les fragments de données pour générer les données décodées (D3).

Codec (100) caractérisé en ce que le codec (100) comprend au moins un codeur (50) selon la revendication 11
permettant de coder des données d’entrée (D1) pour générer des données codées correspondantes (E2), et au
moins un décodeur (60) selon la revendication 23 permettant de décoder les données codées (E2) pour générer
des données de sortie décodées (D3).

Codec (100) selon la revendication 24, caractérisé en ce que I'au moins un codeur (50) et I'au moins un décodeur
(60) sont mutuellement distants dans I'espace et mutuellement couplés ensemble par le biais d'un réseau de

communication de données.

Codec (100) selon la revendication 25, caractérisé en ce que le réseau de communication de données est configuré
a la maniére d’un réseau de communication de poste a poste.

Codec (100) selon la revendication 26, caractérisé en ce que le codeur (50) et le décodeur (60) sont symétriques
dans leur traitement des données qui les traversent.
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