«» UK Patent Application ..GB .,2525448

(13)A

(43)Date of A Publication 28.10.2015
(21) Application No: 1407375.3 (51) INT CL:
HO3M 7/30 (2006.01)
(22) Date of Filing: 27.04.2014
(56) Documents Cited:
US 7155062 B1 US 5974179 A

(71) Applicant(s):
Gurulogic Microsystems Oy
Linnankatu 34, Turku 20100, Finland

(72) Inventor(s):
Tuomas Mikael Karkkainen
Ossi Kalevo

(74) Agent and/or Address for Service:
Basck Ltd
16 Saxon Road, CAMBRIDGE, Cambridgeshire,
CB5 8HS, United Kingdom

US 20110179341 A1
US 20090315744 A1

(58) Field of Search:
INT CL HO3M, HO4N

US 20110043387 A1

Other: WPI, EPODOC, INSPEC

(54) Title of the Invention: Encoder and decoder

Abstract Title: Data compression using symbols indicating duplicate data in an input data stream

(57) An encoder for compressing input data to generate corresponding encoded data (D2) is provided. The encoder is
operable to process the input data to identify reoccurrence of mutually similar patterns of data bits and/or data
symbols therein. The encoder is then operable to represent one or more duplicate reoccurrences of the mutually
similar patterns of data bits and/or data symbols by way of one or more duplication symbols uniquely identifying the

mutually similar patterns.

Fig. 3A

DIVIDE INPUT DATA INTO
DATA BLOCKS AND/OR DATA PACKETS
302

|

IDENTIFY REOCCURRENCE OF
MUTUALLY SIMILAR PATTERNS OF
DATA BITS AND/OR SYMBOLS
304

COMPUTE
REDUNDANGCY-CHECK VALUES

HAS
PREVIOUSLY-OCCURRED
PATTERN REQOCCURRED?
308

Fig. 3B

REUSE DUPLICATION SYMBOL
TO REPRESENT
DUPLICATE REOCCURRENCES
310

NEW DUPLICATION SYMBOL

ASSIGN

312

l

COMBINE
314

YV 8¥PGecad 99

1/5

I

i
=]
ENCODER m

102

T,
I 1]

@k I
-

H 108
\/

N

112

100

Fig. 1

2/5

D1

ENCODER
102

D2
N Z

A4

DECODER
112

D3

Fig. 2

3/5

START

DIVIDE INPUT DATA INTO
DATA BLOCKS AND/OR DATA PACKETS
302

1

IDENTIFY REOCCURRENCE OF
MUTUALLY SIMILAR PATTERNS OF
DATA BITS AND/OR SYMBOLS
304

COMPUTE
REDUNDANCY-CHECK VALUES
306

HAS
PREVIOUSLY-OCCURRED
PATTERN REOCCURRED?
308

Fig. 3A

4/5

REUSE DUPLICATION SYMBOL
TO REPRESENT
DUPLICATE REOCCURRENCES
310

ASSIGN

312

NEW DUPLICATION SYMBOL

l

COMBINE
314

STOP

Fig. 3B

5/5

START

IDENTIFY DUPLICATION SYMBOLS
402

|

DECODE DUPLICATION SYMBOLS
404

|

COMBINE DATA BLOCKS
AND/OR DATA PACKETS
406

STOP

Fig. 4

10

15

20

25

ENCODER AND DECODER

TECHNICAL FIELD

The present disclosure relates generally to data compression; and more specifically,
to encoders for compressing input data (D1) to generate corresponding encoded data
(D2), and decoders for decoding the encoded data (D2) to generate corresponding
decoded data (D3). Moreover, the present disclosure relates to methods of
compressing input data (D1) to generate corresponding encoded data (D2), and
methods of decoding the encoded data (D2) to generate corresponding decoded data
(D3). Furthermore, the present disclosure also relates to software products recorded
on non-transitory, namely non-transient, machine-readable data storage media,
wherein the software products are executable upon computing hardware to

implement the aforesaid methods.

BACKGROUND

Today, it has become a customary practice to compress data to reduce usage of
resources, for example, during data storage and data communication. However,
problems arise when compressed data needs to be decompressed to be used. For
example, a slow process of decompression of compressed video data may render
the whole process useless, as more computational power and time may be wasted

during decompression as compared to that saved during data transfer.

Moreover, multi-dimensional images, videos and/or audios are gaining increasing
popularity. This demands correspondingly more efficient encoding and decoding
methods in encoders and decoders (hereinafter referred to as ‘codecs’) to cope with

associated increased quantities of data to be communicated and stored.

However, conventional codecs have been unable to meet these demands as of now.
The conventional codecs process data in a one-dimensional (1D) manner, and have

not been designed to compress multi-dimensional images, videos and/or audios.

10

15

20

25

-2-

Therefore, there exists a need for such a codec for compressing multi-dimensional
image, video and/or audio data that is efficient as compared to the conventional

codecs.

SUMMARY

The present disclosure seeks to provide an encoder for compressing input data (D1)

to generate corresponding encoded data (D2).

The present disclosure also seeks to provide a decoder for decoding the encoded

data (D2) to generate corresponding decoded data (D3).

Moreover, the present disclosure seeks to provide a method of compressing input

data (D1) to generate corresponding encoded data (D2).

Moreover, the present disclosure also seeks to provide a method of decoding the

encoded data (D2) to generate corresponding decoded data (D3).

In a first aspect, embodiments of the present disclosure provide an encoder for
compressing input data (D1) to generate corresponding encoded data (D2). The
encoder is operable to divide the input data (D1) into a plurality of data blocks and/or
data packets of data bits and/or data symbols. The encoder is then operable to
process the plurality of data blocks and/or data packets to identify reoccurrence of
mutually similar patterns of data bits and/or data symbols in the input data (D1). The
encoder is then operable to represent one or more duplicate reoccurrences of the
mutually similar patterns of data bits and/or data symbols by way of one or more

duplication symbols uniquely identifying the mutually similar patterns.

In order to identify previously-occurred patterns of data bits and/or data symbols, the
encoder is optionally operable to employ one or more redundancy checks. For this
purpose, the encoder is optionally operable to compute one or more redundancy-
check values for at least one data block and/or data packet from amongst the
plurality of data blocks and/or data packets. These redundancy-check values can be
computed using one or more suitable redundancy check methods. These
redundancy-check values may, for example, be hash values that are computed using

one or more hash functions.

10

15

20

25

30

-3-

In an example, a single long redundancy-check value is calculated for at least one
data block and/or data packet of data bits and/or data symbols. In another example,
multiple short redundancy-check values are calculated for at least one data block

and/or data packet of data bits and/or data symbols.

The encoder is then optionally operable to use a same duplication symbol to
represent data blocks and/or data packets of data bits and/or data symbols whose

corresponding redundancy checks match.

Optionally, the data block and/or data packet of data bits is de-duplicated by using a
corresponding unique duplication symbol alternative; for example a previous data
block and/or data packet of data bits, a previous slice data block and/or a data packet
of data bits, a constant data block and or a data packet of data bits or some other
predefined data block and/or data packet of data bits is used as the only alternative
for the duplication symbol. Therefore, optionally, the duplication symbol is replaced
by a true bit (namely de-duplication is used), a false bit (de-duplication is not used),
or a similar value to perform such an alternative de-duplication operation.

Optionally, the duplication symbols are a decremented and/or incremented
chronological sequence of duplication symbol values referring to a data file in which
information describing the mutually similar patterns of data bits and/or data symbols
is stored. This chronological sequence of duplication symbol values is optionally
stored in one or more data servers and/or data storages. These data servers and/or
data storages are optionally accessible to one or more decoders that are compatible

with the encoder, for subsequently decoding the encoded data (D2).

Optionally, the encoder is operable to communicate the duplication symbols
embedded within the encoded data (D2). Alternatively, the encoder is optionally
operable to communicate the duplication symbols as a separate data stream to that
of the encoded data (D2).

Optionally, the encoder is operable to compress data corresponding to at least one
of: one-or-multi-dimensional audio data, image data, and/or video data, sensor data,
economic data, measurement data, seismographic data, analog-to-digital converted
data, biomedical signal data, textural data, calendar data, mathematical data, and

binary data, but not limited thereto.

10

15

20

25

30

-4-

In a second aspect, embodiments of the present disclosure provide a decoder for
decoding the encoded data (D2) to generate corresponding decoded data (D3). The
decoder is operable to identify the duplication symbols included in the encoded data
(D2) indicative of one or more duplicate reoccurrences of mutually similar patterns of
data bits and/or data symbols. The decoder is then operable to replace the
duplication symbols with corresponding patterns of data bits and/or data symbols to
generate the decoded data (D3).

Optionally, the decoder is operable to use true and false bits as the duplication
symbols of the data block, when only one alternative for duplication symbol is
available for the block e.g. previous block, predefined block, etc. When the
duplication symbol is true bit the decoder is then operable to replace the true bit with
corresponding pattern of data bits and/or data symbols to generate the decoded data
(D3). When the duplication symbol is false bit, the false bit is discarded and the

encoded data is used to generate the decoded data (D3).

Optionally, the decoder is operable to fetch the duplicated patterns of data bits and/or
data symbols from the data servers and/or data storages. Alternatively, the decoder
is optionally operable to regenerate the duplicated patterns of data bits and/or data
symbols from corresponding mutually similar patterns of data bits and/or data

symbols included at least once in the encoded data (D2).

Optionally, the encoder and/or the decoder are arranged to function as elements of at
least one of. a video codec, an audio codec, an image codec, and/or a data codec,

but not limited thereto.

In a third aspect, embodiments of the present disclosure provide a method of

compressing input data (D1) to generate corresponding encoded data (D2).

In a fourth aspect, embodiments of the present disclosure provide a software product
recorded on machine-readable non-transitory (non-transient) data storage media,
wherein the software product is executable upon computing hardware for

implementing the aforementioned method.

In a fifth aspect, embodiments of the present disclosure provide a method of

decoding the encoded data (D2) to generate corresponding decoded data (D3).

10

15

20

25

-5-

In a sixth aspect, embodiments of the present disclosure provide a software product
recorded on machine-readable non-transitory (non-transient) data storage media,
wherein the software product is executable upon computing hardware for

implementing the aforementioned method.

In a seventh aspect, embodiments of the present disclosure provide a codec
including a combination of at least one encoder and at least one decoder pursuant to

the present disclosure.

Embodiments of the present disclosure substantially eliminate, or at least partially
address, the aforementioned problems in the prior art, and enable lossless or near
lossless data compression of one-or-multi-dimensional image, video, audio and any

other type of data with a high compression ratio.

Additional aspects, advantages, features and objects of the present disclosure would
be made apparent from the drawings and the detailed description of the illustrative

embodiments construed in conjunction with the appended claims that follow.

It will be appreciated that features of the present disclosure are susceptible to being
combined in various combinations without departing from the scope of the present

disclosure as defined by the appended claims.

DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed description of illustrative
embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the present disclosure, exemplary
constructions of the disclosure are shown in the drawings. However, the present
disclosure is not limited to specific methods and instrumentalities disclosed herein.
Moreover, those in the art will understand that the drawings are not to scale.

Wherever possible, like elements have been indicated by identical numbers.

Embodiments of the present disclosure will now be described, by way of example

only, with reference to the following diagrams wherein:

FIG. 1 is a schematic illustration of an example network environment that is suitable

for practicing embodiments of the present disclosure;

10

15

20

25

30

-6-

FIG. 2 is an illustration of an example data flow, in accordance with an embodiment
of the present disclosure;

FIGs. 3A and 3B collectively are an illustration of steps of a method of compressing
input data (D1) to generate corresponding encoded data (D2), in
accordance with an embodiment of the present disclosure; and

FIG. 4 is an illustration of steps of a method of decoding the encoded data (D2) to
generate corresponding decoded data (D3), in accordance with an

embodiment of the present disclosure.

In the accompanying drawings, an underlined number is employed to represent an
item over which the underlined number is positioned or an item to which the
underlined number is adjacent. A non-underlined number relates to an item identified
by a line linking the non-underlined number to the item. When a number is non-
underlined and accompanied by an associated arrow, the non-underlined number is

used to identify a general item at which the arrow is pointing.

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description illustrates embodiments of the present disclosure
and ways in which they can be implemented. Although the best mode of carrying out
the present disclosure has been disclosed, those skilled in the art would recognize
that other embodiments for carrying out or practicing the present disclosure are also

possible.

Embodiments of the present disclosure provide an encoder for compressing input
data (D1) to generate corresponding encoded data (D2). The encoder is operable to
divide the input data (D1) into a plurality of data blocks and/or data packets of data
bits and/or data symbols. The encoder is then operable to process the plurality of
data blocks and/or data packets to identify reoccurrence of mutually similar patterns
of data bits and/or data symbols in the input data (D1). The encoder is then operable
to represent one or more duplicate reoccurrences of the mutually similar patterns of
data bits and/or data symbols by way of one or more duplication symbols uniquely

identifying the mutually similar patterns.

In order to identify previously-occurred patterns of data bits and/or data symbols, the

encoder is optionally operable to employ one or more redundancy checks. For this

10

15

20

25

30

-7-

purpose, the encoder is optionally operable to compute one or more redundancy-
check values for at least one data block and/or data packet from amongst the
plurality of data blocks and/or data packets. These redundancy-check values can be
computed using one or more suitable redundancy check methods. These
redundancy-check values may, for example, be hash values that are computed using
one or more hash functions.

In an example, a single long redundancy-check value is calculated for at least one
data block and/or data packet of data bits and/or data symbols. In another example,
multiple short redundancy-check values are calculated for at least one data block

and/or data packet of data bits and/or data symbols.

The encoder is then optionally operable to use a same duplication symbol to
represent data blocks and/or data packets of data bits and/or data symbols whose

corresponding redundancy checks match.

Optionally, the data block and/or data packet of data bits may be deduplicated by
using only one possible duplication symbol alternative. E.g. the previous data block
and/or data packet of data bits or some other predefined data block and/or data
packet of data bits is used as the only alternative for the duplication symbol.
Therefore, optionally the duplication symbol can then be replaced by true bit
(deduplication is used) or false bit (deduplication is not used) or similar value to
perform this kind of one alternative deduplication operation.

Optionally, the duplication symbols are a decremented and/or incremented
chronological sequence of duplication symbol values referring to a data file in which
information describing the mutually similar patterns of data bits and/or data symbols
is stored. This chronological sequence of duplication symbol values is optionally
stored in one or more data servers and/or data storages. These data servers and/or
data storages are optionally accessible to one or more decoders that are compatible

with the encoder, for subsequently decoding the encoded data (D2).

Optionally, the encoder is operable to communicate the duplication symbols
embedded within the encoded data (D2). Alternatively, the encoder is optionally
operable to communicate the duplication symbols as a separate data stream to that
of the encoded data (D2).

10

15

20

25

30

-8-

Optionally, the encoder is operable to compress data corresponding to at least one
of: one-or-multi-dimensional audio data, image data, and/or video data, sensor data,
economic data, measurement data, seismographic data, analog-to-digital converted
data, biomedical signal data, textural data, calendar data, mathematical data, and

binary data, but not limited thereto.

Furthermore, embodiments of the present disclosure also provide a decoder for
decoding the encoded data (D2) to generate corresponding decoded data (D3). The
decoder is operable to identify the duplication symbols included in the encoded data
(D2) indicative of one or more duplicate reoccurrences of mutually similar patterns of
data bits and/or data symbols. The decoder is then operable to replace the
duplication symbols with corresponding patterns of data bits and/or data symbols to

generate the decoded data (D3).

Optionally, the decoder is operable to use true and false bits as the duplication

symbols, when only one alternative for duplication symbol is available.

Optionally, the decoder is operable to fetch the duplicated patterns of data bits and/or
data symbols from the data servers and/or data storages. Alternatively, optionally, the
decoder is operable to regenerate the duplicated patterns of data bits and/or data
symbols from corresponding mutually similar patterns of data bits and/or data

symbols included at least once in the encoded data (D2).

Optionally, the encoder and/or the decoder are arranged to function as elements of at
least one of. a video codec, an audio codec, an image codec and/or a data codec,

but not limited thereto.

Referring now to the drawings, particularly by their reference numbers, FIG. 1 is a
schematic illustration of an example network environment 100 that is suitable for
practicing embodiments of the present disclosure. The network environment 100
includes an encoder 102 and one or more electronic devices, depicted as an
electronic device 104 in FIG. 1. The network environment 100 also includes a
communication network 106, and one or more data servers and/or data storages and
one or more databases, depicted as a data server and/or data storage 108 and a

database 110 in FIG. 1. Additionally, the network environment 100 includes a

10

15

20

25

30

-9-

decoder 112 and one or more computing devices, depicted as a computing device
114 in FIG. 1.

The network environment 100 may be implemented in various ways, depending on
various possible scenarios. In one example scenario, the network environment 100
may be implemented by way of a spatially collocated arrangement of the data server
and/or data storage 108 and the database 110. In another example scenario, the
network environment 100 may be implemented by way of a spatially distributed
arrangement of the data server and/or data storage 108 and the database 110
coupled mutually in communication via the communication network 106 or via a direct
connection. In yet another example scenario, the data server and/or data storage 108
and the database 110 may be implemented via cloud computing services.

The data server and/or data storage 108 is coupled in communication with the
encoder 102 and the decoder 112 via the communication network 1060or via a direct
connection. The communication network 106 can be a collection of individual
networks, interconnected with each other and functioning as a single large network.
Such individual networks may be wired, wireless, or a combination thereof. Examples
of such individual networks include, but are not limited to, Local Area Networks
(LANs), Wide Area Networks (WANSs), Metropolitan Area Networks (MANs), Wireless
LANs (WLANSs), Wireless WANs (WWANSs), Wireless MANs (WMANS), the Internet,
second generation (2G) telecommunication networks, third generation (3G)
telecommunication networks, fourth generation (4G) telecommunication networks,

and Worldwide Interoperability for Microwave Access (WIMAX) networks.

The electronic device 104 provides the encoder 102, either directly or through
communication network 106, input data (D1) as an input. The input data (D1) may,
for example, include at least one of. sensor data, one-or-multi-dimensional audio
data, image data, video data and/or other types of data. In an example, the electronic
device 104 may be an Internet Protocol (IP) camera that may be operable to provide
the encoder 102 with sensor data as sensed by one or more image sensors included
within the IP camera. The sensor data may, for example, include one-or-multi-
dimensional image data and/or video data and/or other types of data. Optionally, the

Internet Protocol (IP) camera is employed for implementing a remote surveillance

10

15

20

25

30

-10 -

system, for example for detecting intruders and/or for detecting hazardous events, for

example fires, flooding, and similar.

It will be appreciated here that the encoder 102 may be implemented as a part of the
electronic device 104. In an example, the electronic device 104 may be an image
and/or video capturing device that generates large quantities of image and/or video
data, wherein lossless compression is desired so as to preserve fine information in
the image and/or video data, whilst rendering the quantities of the image and/or video
data manageable for data storage purposes. Examples of such image and/or video
capturing devices include, but are not limited to, surveillance cameras, video
recorders, X-ray devices, Magnetic Resonance Imaging (MRI) scanners, and
ultrasound scanners. The electric device 104 is beneficially implemented using RISC
processors which are capable of performing data manipulations associated with
methods of the present disclosure in a highly efficient manner, while simultaneously

being very energy efficient.

Alternatively, the encoder 102 may be implemented independently, for example,
using computing hardware that is operable to execute one or more software products
recorded on machine-readable non-transient data storage media for compressing the

input data (D1) to generate corresponding encoded data (D2).

Upon receiving the input data (D1) from the electronic device 104, either directly or
through communication network 106, the encoder 102 is operable to process the
input data (D1) to identify reoccurrence of mutually similar patterns of data bits and/or
data symbols therein. The encoder 102 is then operable to represent one or more
duplicate reoccurrences of the mutually similar patterns of data bits and/or data
symbols by way of one or more duplication symbols uniquely identifying the mutually
similar patterns.In order to identify previously-occurred patterns of data bits and/or
data symbols, the encoder 102 is optionally operable to employ one or more
redundancy checks. For this purpose, the encoder 102 is optionally operable to
divide the input data (D1) into a plurality of data blocks and/or data packets of data
bits and/or data symbols. In a first example, the input data (D1) is one-dimensional,

and can be divided using scan-lines. In a second example, the input data (D1) is

10

15

20

25

30

-11 -

multi-dimensional, and can be divided into blocks, depending on a number of

dimensions the blocks have.

In this regard, the encoder 102 is beneficially useable with other known encoders, for
example, in conjunction with a block encoder as described in a published UK patent
application no. GB 2503295 (A) incorporated herein by reference. The block encoder
can be used to divide, in an optimal manner, the input data (D1) into the plurality of
data blocks and/or data packets. In the first example where the input data (D1) is
one-dimensional, the data blocks are extracted from the input data (D1) by cutting an
incoming stream, namely, a byte-string, into shorter streams. For example, indices of
pixels in a 6 x 4 image obtained after a regular scanning, namely, scanning first from
left to right and then from top to bottom, is conveniently represented as follows:

01 02 03 04 05 06
07 080910 1112
1314151617 18
1920 212223 24

These indices, when delivered in one-dimensional form for deduplication, yield a byte

string, which is susceptible to being represented as follows:

0102030405060708091011121314151617 181920 21 22 23 24

The byte string is, for example, optionally split into shorter byte-strings of four bytes,

which are susceptible to being represented as follows:

(01 02 03 04)
(05 06 07 08)
(09 10 11 12)
(13 14 15 16)
(17 18 19 20)
(21 22 23 24)

In the second example, it is assumed that the input data (D1) is a two-dimensional

(2D) image. In this example, the 2D image is optionally divided into smaller 2 x 2

10

15

20

25

30

-12 -

areas, and indices of pixels in the 2D image are optionally reorganized as byte-
strings of four bytes by using a regular scanning order on the 2 x 2 areas of the 2D

image. These byte-strings are optionally represented as follows:

(01 02 07 08)
(03 04 09 10)
(05 06 11 12)
(13 14 19 20)
(15 16 21 22)
(17 18 23 24)

Furthermore, in some examples, the input data (D1) is three-dimensional (3D). In
other examples, there are more dimensions in the input data (D1), for example, such
as time in videos. It is to be noted here that a deduplication process is not executed
in an order in which the input data (D1) has arrived via scanning or reading of a
camera feed. Instead, the deduplication process takes into account dimensions of the
input data (D1), namely, the deduplication process is executed in different
dimensions of the input data (D1) in such a manner that duplication symbol values of

nearby data blocks are located closer to each other.

Likewise, when the input data (D1) is audio data, a similar deduplication process is
optionally executed. In an example, the audio data optionally includes audio signals
from multiple microphones. In such a case, the audio data is divided in a manner that
individual audio signals are separated, and then further divided into data packets.
The deduplication process is optionally then performed on these data packets. In
another example, the deduplication process is susceptible to being used to
deduplicate a particular audio string that reoccurs periodically in the audio data, such
that in between the reoccurrences of that particular audio string there are other audio

strings that have a different periodical recurrence pattern or that do not reoccur.

The encoder 102 is then optionally operable to compute one or more redundancy-
check values for at least one data block and/or data packet from amongst the
plurality of data blocks and/or data packets. These redundancy-check values can be

computed using one or more suitable redundancy check methods. These

10

15

20

25

30

-13 -

redundancy-check values may, for example, be hash values that are computed using

one or more hash functions.

In an example, a single long redundancy-check value is calculated for at least one
data block and/or data packet of data bits and/or data symbols. In another example,
multiple short redundancy-check values are calculated for at least one data block

and/or data packet of data bits and/or data symbols.

The encoder 102 is then optionally operable to use a same duplication symbol to
represent data blocks and/or data packets of data bits and/or data symbols whose

corresponding redundancy checks match.

When a duplicate data block is found for a particular data block to be transmitted or
written, the duplicate data block is validated against that particular data block to
check whether or not the duplicate data block is same as that particular data block. If
the duplicate data block is successfully validated against the particular data block, a
duplication symbol referring to the particular data block is used to refer to the
duplicate data block.

In case of a lossless compression, the duplicate data block is validated using a
“‘“MemoryCompare” functionality, wherein elements of the duplicate data block are
compared with elements of the particular data block. The duplicate data block is
considered invalid, even when only one of the elements of the duplicate data block
does not match the elements of the particular data block.

In case of a lossy compression, absolute differences between the elements of the
duplicate data block and the elements of the particular data block are computed. In
an example, the duplicate data block is considered valid, if an indicator of distortions,
for example, such as a sum of the absolute differences or a sum of squared
differences is smaller than a predefined threshold value of a quality level set for the

lossy compression.

Optionally, the duplication symbols include reference addresses to particular
locations, where information pertaining to their corresponding data blocks can be
obtained. For example, a particular duplication symbol pertaining to a particular data

block may include a pointer that refers to a memory address where that particular

10

15

20

25

30

-14 -

data block has been stored. Accordingly, the particular duplication symbol may be
defined as a negative delta value of a chronological ordinal number of that particular

data block or its sub-segment.

Optionally, when only one alternative for duplication symbol is available, the encoder
can use true bit to describe that this one alternative is used for data deduplication
and false bit to describe that this one alternative is not used for data deduplication i.e.

the original data is delivered.

Optionally, new duplication symbols are a decremented and/or incremented
chronological sequence of duplication symbol values referring to a data storage, for
example, such as a data file, in which information describing the mutually similar data

blocks is stored.

Alternatively, optionally, a duplication symbol is set to a particular value, and new
duplication symbols are used to represent offsets to that particular value. In such a

case, both the particular value and the offsets are communicated.

The encoder 102 communicates the duplication symbol values to the data server
and/or data storage 108 for storing in the database 110. The data server and/or data
storage 108 is arranged to be accessible to the decoder 112, which is beneficially

compatible with the encoder 102, for subsequently decoding the encoded data (D2).

Optionally, the duplication symbols can also refer to a future data block. This is
particularly beneficial for improving a coding efficiency and delivery of data. If
information of the future data block is valid, the decoder 112 decodes the encoded
data (D2) after receiving the information of the future data block from one source or

another source.

On the other hand, if the information of the future data block is not valid, such
delivery of duplication symbols referring to future data blocks can be used for another
purpose. In an example situation in which there is a long period of time until a
duplicate data block occurs, namely, there is a certain period of time during which no
duplicate data blocks occur. In the example situation, an exception can be made and
a duplication symbol referring to a future data block can be transmitted in between

the certain period of time, for example, at approximately a middle of the certain

10

15

20

25

30

-15-

period of time. When the decoder 112 receives the duplication symbol referring to the
future data block that has not yet occurred, the decoder 112 estimates a point in time

when a next duplicate data block is expected to be received.

Let us consider another example situation in which a decision has been made that
transmission of duplication symbols will commence at a second data block, namely,
after a first data block is transmitted. In this example situation, a certain duplication
symbol, which is indicative of a time when a first duplicate data block is expected to

occur, can be transmitted in the first block.

In an embodiment, the encoder 102 is operable to communicate the duplication
symbols embedded within the encoded data (D2). In an example, a duplication
symbol value corresponding to a new data block can be placed before or after the
new data block, for example, if an automatic increase or decrease of duplication

symbol values is not implemented.

It should be appreciated that when the duplication symbols are embedded within the
encoded data (D2) in a single data stream, the entropy coding can still identify an
arrival of a new duplication symbol, and thereafter, use different coding tables, one
for actual data blocks and/or data packets and another for their corresponding

duplication symbols.

In another embodiment, the encoder 102 is operable to communicate the duplication
symbols as a separate data stream to that of the encoded data (D2). Duplication
symbols as well as encoded data can also be compressed e.g. by using range
coding, Huffman coding, Delta coding, ODelta coding, RLE, SRLE, EM, or any other

compression or entropy modification method or combination of methods.

Optionally, when two separate data streams are used to communicate the duplication
symbols and the encoded data (D2), a first of the two separate data streams includes
all of original data blocks, namely, first occurrences of data blocks, and a second of
the two separate data streams includes duplication symbols of all of the data blocks,
including duplication symbols of both original and duplicate data blocks, in a
sequence in which these data blocks are encountered in the input data (D1).
Optionally, a predetermined duplication symbol, for example “null” (“0”), is assigned

to those data blocks that have not been duplicated. In an example situation where all

10

15

20

25

30

-16 -

of the data blocks are new and have not been duplicated, the second of the two
separate data streams is nullified. Therefore, the compression process does not
cause any extraneous load for transmitting, as the first of the two separate data
streams includes the original data blocks in a sequence in which they were
encountered. In this example situation, the decoder 112 determines that no data
blocks were duplicated, as no duplication symbols were transmitted or written.

In yet another embodiment, the encoder 102 is operable to include, within the
encoded data (D2), reference addresses to the database 110 from where information
describing mappings between the duplication symbols and their corresponding data

blocks can be obtained.

In some examples, the decoder 112 is optionally operable to access the encoded
data (D2) from the data server and/or data storage 108. In alternative examples, the
encoder 102 is optionally operable to stream the encoded data (D2) to the decoder
112, either via the communication network 1060r via a direct connection. Moreover, it
is to be noted that a device equipped with a hardware or software encoder is capable
of communicating directly with another device equipped with a hardware or software
decoder. In yet other alternative examples, the decoder 112 may be implemented so
as to retrieve the encoded data (D2) from machine-readable non-transient data

storage media, such as a hard drive and a Solid-State Drive (SSD).

When required, the decoder 112 decodes the encoded data (D2) to generate
corresponding decoded data (D3). In order to decode the encoded data (D2), the
decoder 112 is operable to identify the duplication symbols included in the encoded
data (D2) indicative of one or more duplicate reoccurrences of mutually similar data
blocks. The decoder 112 is then operable to replace the duplication symbols with

corresponding data blocks.

Optionally, the decoder is operable to use true and false bits as the duplication

symbols, when only one alternative for duplication symbol is available.

In an embodiment of the present disclosure, the decoder 112 is operable to
regenerate the duplicated data blocks from corresponding data blocks included at
least once in the encoded data (D2). This may, for example, be applicable to a

situation, where the duplication symbols are embedded within the encoded data (D2).

10

15

20

25

30

-17 -

In another embodiment of the present disclosure, the decoder 112 is operable to
fetch the duplicated data blocks from the data server and/or data storage 108. This
may, for example, be applicable to another situation, where the duplication symbols

are communicated as a separate data stream to that of the encoded data (D2).

In yet another embodiment of the present disclosure, the encoder 102 and the
decoder 112 maintain their own duplication data storages that are accessible locally.
These duplication data storages are optionally updated from time to time to be in
synchronization, namely “sync”, with the data server and/or data storage 108. In an
example, a duplication data storage of the encoder 102 is implemented by way of a
local database and/or a data memory associated with the encoder 102, depicted as a
local database 116 in FIG. 1. A duplication data storage of the decoder 112 is
beneficially implemented by way of a local database and/or a data memory

associated with the encoder 112, depicted as a local database 118 in FIG. 1.

Subsequently, the decoder 112 is optionally operable to send the decoded data (D3)
to the computing device 114. Examples of the computing device 114 include, but are
not limited to, mobile phones, smart telephones, Mobile Internet Devices (MIDs),
tablet computers, Ultra-Mobile Personal Computers (UMPCs), phablet computers,
Personal Digital Assistants (PDAs), web pads, Personal Computers (PCs), handheld
PCs, laptop computers, desktop computers, large-sized touch screens with
embedded PCs, and interactive entertainment devices, such as game consoles,
video players, Television (TV) sets and Set-Top Boxes (STBs).

It is to be noted here that the decoder 112 may be implemented as a part of the
computing device 114. Alternatively, the decoder 112 may be implemented
independently, for example, using computing hardware that is operable to execute
one or more software products recorded on machine-readable non-transient data

storage media for decoding the encoded data (D2).

Optionally, the encoder 102 and/or the decoder 112is arranged to function as
elements of at least one of: a video codec, an audio codec, an image codec, and/or a

data codec, but not limited thereto.

FIG. 1 is merely an example, which should not unduly limit the scope of the claims

herein. It is to be understood that the specific designation for the network

10

15

20

25

30

-18 -

environment 100 is provided as an example and is not to be construed as limiting the
network environment 100 to specific numbers, types, or arrangements of encoders,
electronic devices, decoders, computing devices, data servers and/or data storages,
databases and communication networks. A person skilled in the art will recognize
many variations, alternatives, and modifications of embodiments of the present
disclosure.

FIG. 2 is an illustration of an example data flow, in accordance with an embodiment
of the present disclosure. For illustration purposes, there is considered that the
electronic device 104 is an IP camera that has been installed at a server room to
monitor unauthorized activity. Moreover, there is also considered that a video-
surveillance footage generated by the electronic device 104 is being streamed to the

computing device 114 so as to be viewed by a user associated therewith.

In the example data flow, the input data (D1) is an original video-surveillance footage
captured by the IP camera. The input data (D1) is typically large in size, and
therefore, requires a large space for data storage in the database 110 and a large
network bandwidth for data transfer over the communication network 106 or over a
direct connection. Moreover, the server room may be accessed at a certain time of a
day, and may have less human activity during other times of the day. Therefore, the
input data (D1) is likely to have several duplicate image frames in the original video-

surveillance footage during the other times of the day.

In order to encode the input data (D1) to the encoded data (D2), the encoder 102
analyzes content, type and/or composition of the input data (D1), and divides the
input data (D1) into a plurality of data blocks. Optionally, the data blocks may be
rectilinear in relation to areas of image frames represented by these data blocks, for
example, 64 x 64 elements, 32 x 16 elements, 4 x 20 elements, 10 x 4 elements, 1 x
4 elements, 3 x 1 elements, 8 x 8 elements, 1 x 1 element and so on. However, it is
to be noted here that other shapes of data blocks can be employed, for example,
such as triangular, hexagonal, elliptical and circular. Moreover, the term ‘data block’
may refer to a data block as well as data segments included within the data block,
throughout the present disclosure; for example, the input data (D1) corresponds to an
image of billowing smoke or flames, or turbulent water flow, which include multiple

curved image components that are inefficiently represented by rectilinear data blocks,

10

15

20

25

30

-19 -

but map efficiently onto elliptical and circular elements, thereby providing potentially a

high degree of data compression.

Optionally, each of the plurality of data blocks may have a predefined size. The
predefined size may be either user-defined or system-defined by default. The
predefined size may, for example, be defined by the encoder 102 based on the
analysis of the content, type and/or composition of the input data (D1). Therefore, the
size of the data blocks may be either known to the decoder 112 or transmitted only

once to the decoder 112.

Next, the encoder 102 computes one or more redundancy-check values for a first
data block. Additionally, the encoder 102 optionally populates one or more
redundancy-check value tables, corresponding to one or more redundancy check
methods used, with the corresponding redundancy-check values and a duplication

symbol assigned to the first data block uniquely.

Likewise, the encoder 102 computes one or more redundancy-check values for
subsequent data blocks, and optionally populates the redundancy-check value
tables. Subsequently, the encoder 102 optionally looks up these redundancy-check
values in the redundancy-check value tables to determine whether or not a

previously-occurred data block has reoccurred.

As described earlier, a duplicate data block is checked for validity, before a
duplication symbol is selected to be written or transmitted. For this purpose, absolute
differences and/or squared differences between the duplicate data block and an
original data block are computed. An error value is then computed as an indicator of
distortions, for example, such as a sum of the absolute differences or a sum of the
squared differences or a maximum value of the absolute differences. The duplicate
data block is considered valid, if the error value is smaller than the pre-defined

threshold value of the quality level set for the compression process.

If it is found that a previously-occurred data block has reoccurred, the encoder 102
reuses a unique duplication symbol previously assigned to the previously-occurred
data block to represent duplicate reoccurrences of the previously-occurred data
block.

10

15

20

25

-20-

If it is found that no previously-occurred data block has reoccurred, the encoder 102
assigns a new duplication symbol to a subsequent data block uniquely. Additionally,
the encoder 102 optionally populates the redundancy-check value tables with the
computed redundancy-check value and the new duplication symbol corresponding to

the subsequent data block.

In this manner, the encoder 102 records the new duplication symbol for future use of
the mutually similar data blocks and/or data packets as a decremented and/or
incremented chronological sequence of duplication symbol values referring to a data
block and/or data packet describing the content of stored and delivered data block.
Subsequently, the encoder 102 delivers the data bits and/or data symbols of this data
block and/or data packet to the decoder 112, which also does similar chronological
increment of the new duplication symbol for future use of mutually similar data blocks

and/or data packets.

In a first example, the encoder 102 may communicate the duplication symbols
embedded within the encoded data (D2). In a second example, the encoder 102 may
communicate the duplication symbols as a separate data stream. Let us assume that
unique duplication symbols have been assigned in an order, namely,'a’, ‘b’, ‘c’, ‘d,

and so on.
For illustration purposes only, there will be next considered an example of the input
data (D1), represented as following:

[A] [B] [A] [C] [A] [B] [A] [A] [C] [A] [C] [C][A] [B] [C] [A] [B] [A] [A] [D][C]

wherein

‘[A] represents a first unique data block and/or data packet;

‘[B] represents a second unique data block and/or data packet;
‘[CT represents a third unique data block and/or data packet; and

‘ID] represents a fourth unique data block and/or data packet.

10

15

20

-21-

In accordance with the aforementioned first example, the duplication symbols are
beneficially embedded within the encoded data (D2), for example, with first
occurrences of their corresponding data blocks. This is optionally represented as

following:

x[Alx[Blax[Clabaacaccabcabaax[D]c

wherein

‘a’ represents a unique duplication symbol assigned to the first data blockand/or data

packet;

‘D’ represents a unique duplication symbol assigned to the second data block and/or

data packet;

‘C’ represents a unique duplication symbol assigned to the third data blockand/or data

packet;

‘d’ represents a unique duplication symbol assigned to the fourth data blockand/or

data packet; and

‘X’ represents that a new unique data block is encountered.

In accordance with the aforementioned second example, the duplication symbols are
beneficially communicated as a separate data stream with or without compression,

which is susceptible to being represented as follows:

xxaxabaacaccabcabaaxc

In the second example, an additional data stream including data block and/or data
packetsfor the newduplication symbols is also communicated. This is susceptible to

being represented as follows:

[A] [B] [C] [D]

10

15

20

25

30

-22-

Optionally, the additional data stream is arranged in a chronological sequence of first

occurrences of the data blocks in the input data (D1).

Furthermore, upon receiving the encoded data (D2), the decoder 112 decodes the
encoded data (D2) to generate corresponding decoded data (D3). For this purpose,
the decoder 112 identifies the duplication symbols, either included in the encoded
data (D2) or provided in a separate data stream, indicative of one or more duplicate
reoccurrences of mutually similar data blocks. Thereafter, the decoder 112 replaces

the duplication symbols with their corresponding data blocks .

Optionally, the decoder 112 regenerates duplicated data blocks from corresponding
first occurrences of data blocks included at least once in the encoded data (D2).
Alternatively, the decoder 112 optionally fetches the duplicated data blocks from the
data server and/or data storage 108, whereat the encoder 102 optionally has stored
the encoded data (D2). Yet alternatively, the decoder 112 optionally fetches the
duplicated data blocks from the local database 118, which is in synchronizations,
namely “sync”, with the data server and/or data storage 108.

In this manner, the decoder 112 decodes the duplication symbols to regenerate a

plurality of data blocks and/or data packets of data bits and/or data symbols.

Subsequently, the decoder 112 combines the plurality of data blocks and/or data

packets so regenerated, to generate the decoded data (D3).

In this regard, the decoder 112 is beneficially useable with other known decoders, for
example, in conjunction with a block decoder as described in a published UK patent
application no. GB 2505169 (A) incorporated herein by reference. The block decoder
can be used to combine the plurality of data blocks and/or data packets that are
regenerated from the encoded data (D2), to generate the decoded data (D3).

Subsequently, the decoder 112 sends the decoded data (D3) to the computing
device 114. Continuing from the aforementioned example of the data flow where the
input data (D1) is the original video-surveillance footage, the user is presented the
video-surveillance footage on a display screen of the computing device 114.

Moreover, the encoder 102 optionally streams the encoded data (D2) to the decoder

112, whilst concurrently encoding the input data (D1) in real time. This is particularly

10

15

20

25

30

-23-

beneficial in a situation where source data is encoded at a multimedia server in real

time for streaming to users, for example, for Internet-delivered multimedia services.

Furthermore, the encoder 102 optionally encodes the input data (D1) in a
substantially lossless manner, in accordance with an embodiment of the present
disclosure. Accordingly, the decoder 112 decodes the encoded data (D2) in a

substantially lossless manner.

In accordance with another embodiment of the present disclosure, the encoder 102
encodes the input data (D1) in a lossy manner. In such a situation, the encoder 102
is operable to quantize the input data (D1) before computing the one or more
redundancy-check values. This means that data blocks that differ only slightly from
each other can also be recognized as duplicates, and therefore, can be represented

by a same duplication symbol assigned to them.

Optionally, the encoder 102 is capable of adaptively varying a compression ratio
between the input data (D1) and the encoded data (D2). For this purpose, the
encoder 102 is optionally operable to quantize only some portions of the input data
(D1), based on the analysis of the content, type and/or composition of the input data
(D1). Consequently, the encoder 102 enables a near lossless compression, when

desired.

FIG. 2 is merely an example, which should not unduly limit the scope of the claims
herein. A person skilled in the art will recognize many variations, alternatives, and

modifications of embodiments of the present disclosure.

For example, the encoder 102 may be implemented in a similar manner to encode
audio data, wherein the audio data may be divided into a plurality of data packets
and/or data sections for which one or more redundancy checks may be computed to
identify mutually similar data packets and/or data sections. The term ‘data packet
and/or data section’ is synonymous with the term ‘data block and/or data packet’, but
pertains to audio rather than image and/or video data. Optionally, the encoder 102 is

operable to concurrently encode audio data along with image and/or video data.

However, it will be appreciated that the encoder 102 may be used to encode other

types of data in a similar manner, for example, including at least one of: economic

10

15

20

25

30

-24 -

data, measurement data, seismographic data, analog-to-digital converted data,
biomedical signal data, textural data, calendar data, mathematical data, and binary

data, but not limited thereto.

Moreover, the encoder 102 is optionally operable to compute a predefined number of
redundancy checks on the data blocks. The predefined number may be either user-
defined or system-defined by default. The predefined number may be defined as a
numerical value ranging from one to logx(x), where ‘X is a maximal amount of
redundant data blocks that may occur in the input data (D1). For example, if the
maximal amount is 1024, then the predefined number may be any numerical value

ranging from one to 10.

Optionally, the encoder 102 performs at least two or more redundancy checks using
at least two or more redundancy-check value tables, so that a probability of
occurrence of an invalid duplicate data block is reduced. In an example, values of a
redundancy-check value table can have a bit count of 16. This implies that the
redundancy-check value table can express up to 2'°-1 values. Such a redundancy-
check value uses only two bytes of memory space.

Moreover, different redundancy-check values of a particular data block provide a
direct index or a set of indices from their corresponding redundancy-check value
tables to a same duplication symbol that could be utilized for that particular data
block. For this purpose, for each duplication symbol, a corresponding redundancy-
check value is computed for each redundancy-check value table that uses that
duplication symbol. It is to be noted that zero or more duplication symbols can exist
for each redundancy-check value in a given redundancy-check value table.
Therefore, it is beneficial to have at least one duplication symbol for each
redundancy-check value, while minimizing a number of duplication symbols per

redundancy-check value.

In case of lossy compression, data block values are beneficially quantized before the
redundancy-check values are computed for them. Moreover, each quality level is
associated with its own redundancy-check value table, which points to a same
duplication symbol for a given data block. In this case, an original data block is

inserted into a first redundancy-check value table that corresponds to original data

10

15

20

25

30

-25-

block values, and a second redundancy-check value table that corresponds to a
current setting of the quality level. The first redundancy-check value table includes
duplication symbol values computed from the original data block values, and
therefore, corresponds to lossless compression. The second redundancy-check
value table includes duplication symbol values computed from quantized data block
values, and therefore, corresponds to lossy compression. Consequently, a bit count
of the duplication symbol values of the second redundancy-check value table is

smaller than that of the first redundancy-check value table.

The redundancy check methods used to compute redundancy-check values can be
mathematical functions, calculation formulae, algorithms or pre-computed tables. A
redundancy check method is suitably selected such that it is capable of producing a
single, explicit and distinct numerical value, which stays within allowed boundaries
and parameters of a redundancy-check value table. In other words, the redundancy
check method should produce different redundancy-check values for different data

blocks as often as possible.

Optionally, the encoder 102 may employ hash functions for computing these
redundancy checks. A suitable hash function may be selected, so as to decrease a
probability of two different data blocks generating a similar hash code (hereinafter
referred to as a ‘collision’). In case a collision occurs, the collision is regarded as a
false positive result, namely, a data block that is needed to be delivered is different
from a data block represented by a given duplication symbol. Accordingly, data
blocks from which the collision occurred are compared to check whether or not these

data blocks are similar.

A probability of occurrence of such false positive results can be greatly reduced by
using at least two or more redundancy-check value tables. Optionally, one or more of

following can be used as redundancy checks:

(N hashfunctions,
(i) cryptographic hash functions, and/or
(i) encryption algorithms, such as Pretty Good Privacy (PGP).

Furthermore, embodiments of the present disclosure provide a codec including a

combination of the encoder 102 and the decoder 112.

10

15

20

25

30

-26 -

FIGs. 3A and 3B collectively are an illustration of steps of a method of compressing
the input data (D1) to generate the corresponding encoded data (D2), in accordance
with an embodiment of the present disclosure. The method is depicted as a collection
of steps in a logical flow diagram, which represents a sequence of steps that can be

implemented in hardware, software, or a combination thereof.

At a step 302, the encoder 102 divides the input data (D1) into a plurality of data

blocks and/or data packets of data bits and/or data symbols.

At a step 304, the encoder 102 processes the plurality of data blocks and/or data
packets to identify reoccurrence of mutually similar patterns of data bits and/or data
symbols in the input data (D1).

The step 304 optionally includes a sub-step 306 at which the encoder 102 computes
one or more redundancy-check values and redundancy-check value tables that are
used to identify previously-occurred patterns of data bits and/or data symbols, as

described earlier.

Next, at a step 308, the encoder 102 checks whether or not a previously-occurred
pattern of data bits and/or data symbols has reoccurred. If, at the step 308, it is found
that a previously-occurred pattern of data bits and/or data symbols has reoccurred, a
step 310 is performed. Otherwise, if it is found that no previously-occurred pattern of

data bits and/or data symbols has reoccurred, a step 312 is performed.

At the step 310, the encoder 102 reuses a duplication symbol, which was assigned to
the previously-occurred pattern of data bits and/or data symbols initially, to represent
one or more duplicate reoccurrences of the previously-occurred pattern of data bits
and/or data symbols. In this manner, the encoder 102 represents duplicate
reoccurrences of the mutually similar patterns of data bits and/or data symbols by
way of the duplication symbols that uniquely identify these mutually similar patterns

of data bits and/or data symbols.

At the step 312, the encoder 102 assigns a new duplication symbol to a new pattern
of data bits and/or data symbols uniquely. Optionally, the new duplication symbol is
susceptible to being represented as an offset to a duplication symbol value that was

set previously.

10

15

20

25

30

-27 -

In accordance with the step 312, the encoder 102 optionally populates redundancy-
check value tables with the new duplication symbol and redundancy-check values
corresponding to the new pattern of data bits and/or data symbols.Finally, at a step
314, the encoder 102 combines data obtained from the steps 310 and 312 into a

single data stream or two separate data streams, as described earlier.

The steps 304 to 314 are performed for each pattern of data bits and/or data

symbols.

In this manner, the encoder 102 generates the encoded data (D2) such that only
mutually different patterns of data bits and/or data symbols are required to be stored
and/or transmitted as mutually different data blocks and/or data packets, while
duplication symbols are stored and/or transmitted for mutually similar patterns of data

bits and/or data symbols.

Consequently, the encoded data (D2) is relatively small in size; and therefore,
requires a small space for data storage in the database 110 and a small network
bandwidth for data transfer over the communication network 106or over a direct
connection. Moreover, the encoded data (D2) includes less redundant information
therein, and therefore, has smaller entropy sum for the entire data, but higher entropy
value for the mutually different data blocks and/or data packets that have been
delivered, as compared to the input data (D1). Here, the entropy is a measure of

unpredictability of information content.

After the step 314, the encoder 102optionally communicates the duplication symbols
embedded within the encoded data (D2). Alternatively, optionally, the encoder 102
communicates the duplication symbols as a separate data stream and the mutually

different data blocks and/or data packets as another data stream.

The steps 302 to 314 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

Embodiments of the present disclosure provide a software product recorded on

machine-readable non-transient data storage media, wherein the software product is

10

15

20

25

30

-28-

executable upon computing hardware for implementing the method as described in
conjunction with Figs. 3A and 3B. The software product is optionally downloadable
from a software application store, for example, from an “App store” to a computing

device.

In an example, a software product may pertain to an example encoder that uses one
redundancy check method to compute two redundancy-check values, whereinreused
duplication symbols have dynamic values representing a negative block offset as

illustrated below:

/1 Reset first and second hash codes for a data block
HashValue1 :=0;
HashValue2 := 0;

/I Process all bytes through in the data block

PtrDst := @PByte(FBlockData.Memory)[(FBlockDataBitOffset + 7) div 8],
for Offset := 0 to FDataBlockSize - 1 do

begin

/I Write byte already in place from source to destination
/1 if it is not detected as a redundant data block
PtrDst[Offset] := APtrSrc[Offset];

/I Calculate first hash code for the data block
HashValue1 := (HashValue1 + APtrSrc[Offset]);
HashValue1 := (HashValue1 shl 10) + HashValue1;
HashValue1 := HashValue1 or (HashValue1 shr 6);

/I Calculate second hash code for the data block
HashValue2 := (HashValue2 + APtrSrc[Offset]);
HashValue2 := HashValue2 or (HashValue2 shr 13);
HashValue2 .= HashValue2 + (HashValue2 shl 3);
end;

10

15

20

25

30

-29-

/! Find the data block number from the first hash table
DataBlockNumber1 := FHashTable1[HashValue1];

/! Find the data block number from the second hash table
DataBlockNumber2 := FHashTable2[HashValue2];

/I If a redundant data block is detected in both tables, then write a negative delta
/lencoded// duplication symbol for the redundant data block and do not increment the
data block offset to //cancel the

/I change in destination memory

if (DataBlockNumber> 0) and (DataBlockNumber = FHashTable2[HashValue2]) then
GurulogicVideoCodecLibUnit. SetNumber(PByte(F BlockSymbol.Memory),
FBlockSymbolBitOffset, (FDataBlockCount - DataBlockNumber) + 1)

/I If the data block is not redundant, then write it into a raw table
else

begin

/I Write constant zero duplication symbol for non-redundant data block

if (FDataBlockCount> 0) then

GurulogicVideoCodecLibUnit. SetNumber(PByte(FBlockSymbol.Memory),
FBlockSymbolBitOffset, $00);

// Wrrite increment data block offset
Inc(FBlockDataBitOffset, FDataBlockBitSize);

I/ Increment count of total data blocks
Inc(FDataBlockCount, 1);

/I Set the chronological data block number into the first hash table
FHashTable1[HashValue1] := FDataBlockCount;

// Set the chronological data block number into the second hash table
FHashTable2[HashValue2] := FDataBlockCount;

10

15

20

25

30

-30-

end;
In an alternative implementation, separate values for unique duplication symbols can
be used, instead of a dynamic negative block offset. This potentially compresses
duplication symbols more efficiently with an entropy encoder, for example, such as
range coding, arithmetic coding, and Variable-Length Coding (VLC).

FIG. 4 is an illustration of steps of a method of decoding the encoded data (D2) to
generate corresponding decoded data (D3), in accordance with an embodiment of
the present disclosure. The method is depicted as a collection of steps in a logical
flow diagram, which represents a sequence of steps that can be implemented in
hardware, software, or a combination thereof.

At a step 402, the decoder 112 processes the encoded data (D2) to identify one or
more duplication symbols, either included in the encoded data (D2) or provided in a
separate data stream, that is indicative of one or more duplicate reoccurrences of
mutually similar patterns of data bits and/or data symbols.

Next, at a step 404, the decoder 112 decodes the duplication symbols to regenerate
a plurality of data blocks and/or data packets of data bits and/or data symbols. For
this purpose, the decoder 112 replaces the duplication symbols with their
corresponding patterns of data bits and/or data symbols.In accordance with the step
404, the decoder 112 optionally regenerates the duplicated patterns of data bits
and/or data symbols from corresponding mutually similar patterns of data bits and/or
data symbols included at least once in the encoded data (D2). Alternatively, the
decoder 112 optionally fetches the duplicated patterns of data bits and/or data
symbols from the data server and/or data storage 108, whereat the encoder 102 may
have stored the encoded data (D2). Yet alternatively, the decoder 112 optionally
fetches the duplicated patterns of data bits and/or data symbols from the local
database 118, which is in synchronization, namely “sync”, with the data server and/or

data storage 108.

Subsequently, at a step 406, the decoder 112 combines the plurality of data blocks
and/or data packets regenerated at the step 404, to generate the decoded data (D3).

10

15

20

25

30

-31-

The steps 402 to 406 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

Embodiments of the present disclosure provide a software product recorded on
machine-readable non-transient data storage media, wherein the software product is
executable upon computing hardware for implementing the method as described in
conjunction with FIG. 4. The software product is optionally downloadable from a
software application store, for example, from an “App store” to a computing device,

such as the computing device 114.

In an example, a software product may pertain to an example decoder that is

compatible with the example encoder as illustrated below:

/I Set the negative delta duplication symbol to zero if processing the first data block
if (ADataBlockCount = 0) then
NegativeDeltaSymbol := 0

/I Read the negative delta duplication symbol if not processing the first data block
elseNegativeDeltaSymbol :=

GurulogicVideoCodecLibUnit. GetNumber(PByte(FBlockSymbol. Memory),
FBlockSymbolBitOffset);

/I Calculate the data block number if the negative delta duplication symbol is not zero
if (NegativeDeltaSymbol> 0) then
DataBlockNumber := (ADataBlockCount - NegativeDeltaSymbol)

/! Get the data block number if no redundant data block is found
else

begin

/I Get data block index
DataBlockNumber :=ADataBlockCount;

10

15

20

25

-32-

/I Increment the count of total data blocks
Inc(ADataBlockCount, 1);

end:
/I Get the memory offset for the data block
FBlockData.Position := FDataBlockSize * DataBlockNumber;

/l Read the data block from memory
FBlockData.Read(APtrData[0], FDataBlockSize);

Furthermore, embodiments of the present disclosure provide a codec including a
combination of at least one encoder as described in conjunction with FIGs. 3A and

3B and at least one decoder as described in conjunction with FIG. 4.

Embodiments of the present disclosure are susceptible to being used for various
purposes, including, though not limited to, enabling lossless or near lossless data
compression of one-or-multi-dimensional image, video, audio and any other type of

data with a high compression ratio.

Modifications to embodiments of the present disclosure described in the foregoing
are possible without departing from the scope of the present disclosure as defined by
the accompanying claims. Expressions such as ‘“including”’, “comprising”,
‘incorporating”, “consisting of’, “have”, “is” used to describe and claim the present
disclosure are intended to be construed in a non-exclusive manner, namely allowing
for items, components or elements not explicitly described also to be present.

Reference to the singular is also to be construed to relate to the plural.

10

15

20

25

-33-

CLAIMS
We claim:

1. An encoder for compressing input data (D1) to generate corresponding
encoded data (D2), wherein the encoder is operable to divide the input data (D1) into
a plurality of data blocks and/or data packets of data bits and/or data symbols, to
process the plurality of data blocks and/or data packets to identify reoccurrence of
mutually similar patterns of data bits and/or data symbols in the input data (D1), and
to represent one or more duplicate reoccurrences of the mutually similar patterns of
data bits and/or data symbols by way of one or more duplication symbols uniquely
identifying the mutually similar patterns.

2. The encoder as claimed in claim 1, wherein the one or more duplication
symbols are a decremented and/or incremented chronological sequence of
duplication symbol values referring to a data file in which information describing the

mutually similar patterns of data bits and/or data symbols is stored.

3. The encoder as claimed in claim 2, wherein the chronological sequence of

duplication symbol values is stored in one or more data servers and/or data storages.

4. The encoder as claimed in claim 3, wherein the one or more data servers
and/or data storages are accessible to one or more decoders that are compatible

with the encoder, for subsequently decoding the encoded data (D2).

5. The encoder as claimed in claim 1, wherein the one or more data blocks
and/or data packets of data bits and/data symbols are represented by one or more

corresponding alternative unique duplication-indicative symbols.

6. The encoder as claimed in claim 5, wherein the one or more corresponding
unique duplication-indicative symbols are implemented as a previous data block, a
previous data packet of data bits, a previous slice data block, or a constant data
block.

10

15

20

25

-34-

7. The encoder as claimed in claim 1, wherein the encoder is operable to
communicate the one or more duplication symbols embedded within the encoded
data (D2).

8. The encoder as claimed in claim 1, wherein the encoder is operable to
communicate the one or more duplication symbols as a separate data stream to that
of the encoded data (D2).

9. The encoder as claimed in claim 1, wherein the encoder is operable to
compress data corresponding to at least one of. sensor data, one-or-multi-

dimensional audio data, image data, video data.

10. The encoder as claimed in claim 1, wherein the encoder is arranged to
function as an element of at least one of. a video codec, an audio codec, an image

codec, a data codec.

11. The encoder as claimed in claim 1, wherein the encoder is operable to
compute one or more redundancy-check values that are used to identify previously-

occurred patterns of data bits and/or data symbols.

12. A method of compressing input data (D1) to generate corresponding encoded

data (D2), wherein the method includes:

() dividing the input data (D1) into a plurality of data blocks and/or data packets

of data bits and/or data symbols;

(i) processing the plurality of data blocks and/or data packets to identify
reoccurrence of mutually similar patterns of data bits and/or data symbols in the input
data (D1); and

(i) representing one or more duplicate reoccurrences of the mutually similar
patterns of data bits and/or data symbols by way of one or more duplication symbols

uniquely identifying the mutually similar patterns.

13. The method as claimed in claim 12, wherein the method includes recording the

one or more duplication symbols as a decremented and/or incremented chronological

10

15

20

25

-35-

sequence of duplication symbol values referring to a data file in which information

describing the mutually similar patterns of data bits and/or data symbols is stored.

14. The method as claimed in claim 13, wherein the method includes storing the
chronological sequence of duplication symbol values in one or more data servers
and/or data storages.

15. The method as claimed in claim 14, wherein the method includes arranging for
the one or more data servers and/or data storages to be accessible to one or more
decoders that are compatible with the encoder, for subsequently decoding the
encoded data (D2).

16. The method as clamed in clam 12, wherein the method includes
communicating the one or more duplication symbols embedded within the encoded
data (D2).

17. The method as claimed in clam 12, wherein the method includes
communicating the one or more duplication symbols as a separate data stream to
that of the encoded data (D2).

18. The method as claimed in claim 12, wherein the method includes compressing
data corresponding to at least one of. sensor data, one-or-multi-dimensional audio

data, image data, video data.

19. The method as claimed in claim 12, wherein the method includes computing
one or more redundancy-check values that are used to identify previously-occurred

patterns of data bits and/or data symbols.

20. A decoder for decoding encoded data (D2) to generate corresponding
decoded data (D3), wherein the decoder is operable to identify one or more
duplication symbols included in the encoded data (D2) indicative of one or more
duplicate reoccurrences of mutually similar patterns of data bits and/or data symbols,
and to replace the one or more duplication symbols with corresponding patterns of

data bits and/or data symbols to generate the decoded data (D3).

10

15

20

25

-36 -

21. The decoder as claimed in claim 20, wherein the decoder is operable to fetch
the one or more duplicated patterns of data bits and/or data symbols from one or

more data servers and/or data storages.

22. The decoder as claimed in claim 20, wherein the decoder is operable to
regenerate the one or more duplicated patterns of data bits and/or data symbols from
corresponding mutually similar patterns of data bits and/or data symbols included at

least once in the encoded data (D2).

23. A method of decoding encoded data (D2) to generate corresponding decoded

data (D3), wherein the method includes:

(i) identifying one or more duplication symbols included in the encoded data (D2)
indicative of one or more duplicate reoccurrences of patterns of data bits and/or data

symbols; and

(i) replacing the one or more duplication symbols with corresponding patterns of
data bits and/or data symbols to generate the decoded data (D3).

24. The method as claimed in claim 23, wherein the method includes fetching the
one or more duplicated patterns of data bits and/or data symbols from one or more

data servers and/or data storages.

25. The method as claimed in claim 23, wherein the method includes regenerating
the one or more duplicated patterns of data bits and/or data symbols from
corresponding mutually similar patterns of data bits and/or data symbols included at

least once in the encoded data (D2).

26. A software product recorded on machine-readable non-transitory data storage
media, wherein the software product is executable upon computing hardware for

implementing the method as claimed in claim 12.

27. A software product recorded on machine-readable non-transitory data storage
media, wherein the software product is executable upon computing hardware for

implementing the method as claimed in claim 23.

-37 -

27. A codec including a combination of at least one encoder as claimed in claim 1,

and at least one decoder as claimed in claim 20.

1303 15

38

Amendments to the claims have been filed as follows

CLAIMS
We claim:

1. An encoder for compressing input data (D1) to generate corresponding
encoded data (D2), wherein the encoder is operable to divide the input data (D1) into
a plurality of data blocks and/or data packets of data bits and/or data symbols, to
process the plurality of data blocks and/or data packets to identify reoccurrence of
mutually similar multi-dimensional patterns of data bits and/or data symbols in the
input data (D1), and to represent one or more duplicate reoccurrences of the mutually
similar multi-dimensional patterns of data bits and/or data symbols by way of one or
more duplication symbols uniquely identifying the mutually similar multi-dimensional

patterns.

2. The encoder as claimed in claim 1, wherein the plurality of data blocks include

data blocks of fixed size.

3. The encoder as claimed in claim 1, wherein the one or more duplication
symbols are a decremented and/or incremented chronological sequence of duplication
symbol values referring to a data file in which information describing the mutually

similar multi-dimensional patterns of data bits and/or data symbols is stored.

4. The encoder as claimed in claim 3, wherein the chronological sequence of

duplication symbol values is stored in one or more data servers and/or data storages.

5. The encoder as claimed in claim 4, wherein the one or more data servers and/or
data storages are accessible to one or more decoders that are compatible with the

encoder, for subsequently decoding the encoded data (D2).

6. The encoder as claimed in claim 1, wherein the one or more data blocks and/or
data packets of data bits and/data symbols are represented by one or more

corresponding alternative unique duplication-indicative symbols.

7. The encoder as claimed in claim 6, wherein the one or more corresponding
unique duplication-indicative symbols are implemented as a previous data block, a

previous data packet of data bits, a previous slice data block, or a constant data block.

1303 15

39

8. The encoder as claimed in claim 1, wherein the encoder is operable to
communicate the one or more duplication symbols embedded within the encoded data
(D2).

9. The encoder as claimed in claim 1, wherein the encoder is operable to
communicate the one or more duplication symbols as a separate data stream to that
of the encoded data (D2).

10. The encoder as claimed in claim 1, wherein the encoder is operable to
compress data corresponding to at least one of: sensor data, one-or-multi-dimensional

audio data, image data, video data.

11. The encoder as claimed in claim 1, wherein the encoder is arranged to function
as an element of at least one of: a video codec, an audio codec, an image codec, a

data codec.

12. The encoder as claimed in claim 1, wherein the encoder is operable to compute
one or more redundancy-check values that are used to identify previously-occurred

multi-dimensional patterns of data bits and/or data symbols.

13. A method of compressing input data (D1) to generate corresponding encoded

data (D2), wherein the method includes:

(1) dividing the input data (D1) into a plurality of data blocks and/or data packets

of data bits and/or data symbols;

(i) processing the plurality of data blocks and/or data packets to identify
reoccurrence of mutually similar multi-dimensional patterns of data bits and/or data

symbols in the input data (D1); and

(i) representing one or more duplicate reoccurrences of the mutually similar multi-
dimensional patterns of data bits and/or data symbols by way of one or more
duplication symbols uniquely identifying the mutually similar multi-dimensional

patterns.

14. The method as claimed in claim 13, wherein the plurality of data blocks include

data blocks of fixed size.

1303 15

40

15. The method as claimed in claim 13, wherein the method includes recording the
one or more duplication symbols as a decremented and/or incremented chronological
sequence of duplication symbol values referring to a data file in which information
describing the mutually similar multi-dimensional patterns of data bits and/or data

symbols is stored.

16. The method as claimed in claim 15, wherein the method includes storing the
chronological sequence of duplication symbol values in one or more data servers

and/or data storages.

17. The method as claimed in claim 16, wherein the method includes arranging for
the one or more data servers and/or data storages to be accessible to one or more
decoders that are compatible with the encoder, for subsequently decoding the
encoded data (D2).

18. The method as claimed in clam 13, wherein the method includes
communicating the one or more duplication symbols embedded within the encoded
data (D2).

19. The method as claimed in clam 13, wherein the method includes
communicating the one or more duplication symbols as a separate data stream to that
of the encoded data (D2).

20. The method as claimed in claim 13, wherein the method includes compressing
data corresponding to at least one of. sensor data, one-or-multi-dimensional audio

data, image data, video data.

21. The method as claimed in claim 13, wherein the method includes computing
one or more redundancy-check values that are used to identify previously-occurred
multi-dimensional patterns of data bits and/or data symbols.

22. Adecoder for decoding encoded data (D2) to generate corresponding decoded
data (D3), wherein the decoder is operable to identify one or more duplication symbols
included in the encoded data (D2) indicative of one or more duplicate reoccurrences

of mutually similar multi-dimensional patterns of data bits and/or data symbols, and to

1303 15

41

replace the one or more duplication symbols with corresponding multi-dimensional

patterns of data bits and/or data symbols to generate the decoded data (D3).

23. The decoder as claimed in claim 22, wherein the decoder is operable to fetch
the one or more duplicated multi-dimensional patterns of data bits and/or data symbols
from one or more data servers and/or data storages.

24. The decoder as claimed in claim 22, wherein the decoder is operable to
regenerate the one or more duplicated multi-dimensional patterns of data bits and/or
data symbols from corresponding mutually similar multi-dimensional patterns of data

bits and/or data symbols included at least once in the encoded data (D2).

25. A method of decoding encoded data (D2) to generate corresponding decoded

data (D3), wherein the method includes:

(i) identifying one or more duplication symbols included in the encoded data (D2)
indicative of one or more duplicate reoccurrences of multi-dimensional patterns of data
bits and/or data symbols; and

(i) replacing the one or more duplication symbols with corresponding multi-
dimensional patterns of data bits and/or data symbols to generate the decoded data
(D3).

26. The method as claimed in claim 25, wherein the method includes fetching the
one or more duplicated multi-dimensional patterns of data bits and/or data symbols

from one or more data servers and/or data storages.

27. The method as claimed in claim 25, wherein the method includes regenerating
the one or more duplicated multi-dimensional patterns of data bits and/or data symbols
from corresponding mutually similar multi-dimensional patterns of data bits and/or data

symbols included at least once in the encoded data (D2).

28. A software product recorded on machine-readable non-transitory data storage
media, wherein the software product is executable upon computing hardware for

implementing the method as claimed in claim 13.

1303 15

42

29. A software product recorded on machine-readable non-transitory data storage
media, wherein the software product is executable upon computing hardware for

implementing the method as claimed in claim 25.

30. A codec including a combination of at least one encoder as claimed in claim 1,

and at least one decoder as claimed in claim 22.

Intellectual
Property

Office
43

Application No: GB1407375.3 Examiner: Mr Steven Davies

Claims searched: 1-27 Date of search: 19 October 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

X 1-7,9-16,| US2011/0179341 Al
18-27 | (Falls et al) e.g. paras. 76-85

X 1-7, 9, 10,| US2009/0315744 Al
12-16, 18,| (Burukhin et al) e.g. paras. 16-27
20-27

X 1, 5-7,9-| US2011/0043387 Al
12, 16, | (Abali et al) e.g. paras. 39-41

18-27
Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the tiling date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:
Search of GB. EP, WO & US patent documents classified in the following areas of the UKC™ :

Worldwide search of patent documents classified in the following areas of the IPC

| HO3M |
The following online and other databases have been used in the preparation of this search report
| WPL, EPODOC, INSPEC |
International Classification:
Subclass Subgroup Valid From
HO3M 0007/30 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	A Publication Front Page

