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ENCODER, DECODER AND METHOD

Technical Field

The present disclosure relates to encoders, for example to encoders which are
operable to employ a direct ODelta operator. Moreover, the present disclosure is
concerned with methods of encoding data, for example with methods of encoding
data by employing a direct ODelta operator. Furthermore, the present disclosure
also relates to decoders for decoding encoded data which are subject to an inverse
ODelta operator. Additionally, the present disclosure is concerned with methods of
decoding encoded data which are subject to an inverse ODelta operator. Yet
additionally, the present disclosure relates to software products recorded on
machine-readable data storage media, wherein the software products are executable

upon computing hardware for implementing aforesaid methods.

Background of the invention

Claude E. Shannon proposed a mathematical theory of communication which has
provided a basis for contemporary communication systems. Moreover, various
contemporary encoding methods have been evolved in knowledge of the aforesaid
mathematical theory. A list of information sources providing an overview of

contemporary technical knowledge is provided in Table 1.

Table 1: Known technical art

Earlier Detail
document

P1 “Variable-length code”, Wikipedia (accessed 28 November 2012)
URL: http://en.wikipedia.org/wiki/Variable-length _code

P2 ‘Run-length encoding *, Wikipedia (accessed 28 November 2012)
URL: http://en.wikipedia.org/wiki/Run-length_encoding

P3 “‘Huffman coding”, Wikipedia (accessed 28 November 2012)
URL: http://en.wikipedia.org/wiki/Huffman_coding

P4 “Arithmetic coding”, Wikipedia (accessed 28 November 2012)
URL: http://en.wikipedia.org/wiki/Arithmetic_coding

P5 ‘A Mathematic Theory of Communication”, Shannon, Claude E. (1948) (accessed 28
November 2012)
URL: http://cm:bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

P6 “Delta encoding”, Wikipedia (accessed 28 November 2012)
URL: http://en.wikipedia.org/wiki/Delta_coding
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P7 Shannon’s source coding theorem; Wiikipedia (accessed 28 November 2012)
URL: http://en.wikipedia.org/wiki/Source_coding_theorem
P8 “Entropy” — Wikipedia (accessed 28 November 2012)

URL: http://en.wikipedia/wiki/Entropy

In a European patent EP 1 376 974 B1 (“Method and apparatus for packet header
compression’, Alcatel Lucent (FR)), there is described a method of transmitting data
packets, wherein the data packets comprise a field (CF) containing a compressed
value. The compressed value represents a value evolving between two consecutive
data packets and comprises a predefined interval (herein after “interpretation
interval’). The method includes steps of:

() if the distance between the value to be compressed and a predefined
wraparound boundary is lower than a predefined threshold value, appending
an additional bit to the compressed value, wherein the additional bit univocally
indicates the relative position of the value to be compressed to the
wraparound boundary;

(i) at a receiver, computing a first interpretation interval in accordance with all
received bits of the compressed value;

(i) signalling a wraparound if more than one value of the first interpretation
interval matches the received compressed value;

(iv)  upon signalling of a wraparound, computing a second interpretation interval in
accordance with all received bits of the compressed value except the
additional bit; and

(v) disambiguating the decompressed value in the second interpretation interval

using the additional bit.

The definition of Shannon entropy is provided in documents P7 and P8 listed in Table
1. There is a multitude of different compression methods that are operable to
compress entropy present in given data, and such methods are sometimes employed
to modify entropy, for example for obtaining greater lossless compression ratios for
the given data; such entropy-modifying methods include, for example, run-length-
encoding (RLE) as described in document P2 in Table 1, variable-length-coding
(VLC) as described in document P1 in Table 1, Huffman coding as described in

document P3 in Table 1, Delta coding as described in document P6 in Table 1, and
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Arithmetic coding, namely Range coding, as described in document P4 in Table 1.
Such methods are beneficially employed to compress data representative of
alphabetic characters, numbers, bytes and words. However, such methods are not
well adapted to compress given data at a bit-level, and for that reason are not well

suited for compressing such given data that is susceptible to changing bit-by-bit.

Delta encoding, for example as described in document P6 in Table 1, is operable to
generate delta values that can be positive or negative values from the positive
original data values. Moreover, there are known implementations of Delta encoders
for use in 8-bit, 16-bit or 32-bit wraparound, based upon used sizes of data elements.
However, there is a lack of contemporary Delta encoders that are optimized for
regimes other than 8-bit, 16-bit or 32-bit values. In particular, known Delta encoders
are especially inefficient when coding original bit values, namely “0” and “1”, as three

different values typically result therefrom, namely “-1”, “0” and “1”.

All kinds of data consume storage space, and communication system transmission
capacity is needed when such data is to be moved from one location to another. As
quantities of data increase, for example as a result of multimedia developments such
as 3-dimensional video content, correspondingly more storage space and
transmission capacity are needed to handle the data, and also more energy is
needed as the quantity of data increases. Globally, quantities of data being
communicated are progressively increasing with time; for example, the Internet
contains a huge amount of data, some of which is stored in multiple copies.
Moreover, there are methods which are contemporarily available for compressing
entropy E associated with data, for example for use when reducing size of the data.
Furthermore, there are also available methods of modifying entropy, for example
Delta encoding and run-length encoding (RLE), but improved methods are required
for providing even greater data compression than is contemporarily feasible.

There is also a need to optimize utilization of known Delta encoding methods for
enabling faster and more efficient encoding of original data to be achieved, for
example when all values in data elements in the original data are not used and/or a

preceding or following encoding method employed in combination with Delta
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encoding methods requires a higher bit format than a bit dynamic originally used for

data to be encoded.

Summary of the invention
The present invention seeks to provide an improved form of Delta encoder, namely a
direct ODelta encoder, which is more efficient when encoding individual bits as well

as other values of data.

Moreover, the present invention seeks to provide an improved method of Delta

encoding data, namely a method of direct ODelta encoding the data.

Furthermore, the present invention seeks to provide an improved decoder for

decoding ODelta-encoded data, namely an inverse ODelta decoder.

Additionally, the present invention seeks to provide an improved method of decoding

ODelta-encoded data, namely a method of inverse ODelta decoding of the data.

According to a first aspect of the present invention, there is provided an encoder for
encoding input data (D1) including a sequence of numerical values to generate
corresponding encoded output data (D2 or D3), characterized in that the encoder
(10) includes a data processing arrangement for applying to the input data (D1) a
form of differential and/or sum encoding to generate one or more corresponding
encoded sequences, wherein the one or more corresponding encoded sequences
are subjected to a wrap around a maximum value and/or a wrap around a minimum

value, for generating the encoded output data (D2 or D3).

The invention is of advantage in that a combination of use of the analysis and the
form of ODelta coding is capable of providing useful entropy modification of the input
data (D1) which enables enhanced data compression to be achieved within some
entropy encoder when generating the encoded data (D3) from the encoded data
(D2).
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Optionally, in the encoder, the data processing arrangement is operable to analyze
the input data (D1) and/or the one or more corresponding encoded sequences to
compute one or more offset, minimum or maximum values for applying to the one or
more corresponding encoded sequences for use in generating the encoded output
data (D2 or D3). More optionally, in the encoder, the one or more offset values have

a value “0.

Optionally, the encoder is operable to process the numerical values including one or
more 1-bit values, and the encoder is operable to encode the input data (D1) in a bit-

by-bit manner.

Optionally, in the encoder, the one or more corresponding encoded sequences

represent changes in sequential values of the input data (D1).

Optionally, the encoder is operable to subdivide the input data (D1) into a plurality of
sections of data which are separately encoded. More optionally, the encoder is
operable to apply encoding selectively to the sections of data only when data

compression is thereby achievable in the encoded output data (D2 or D3).

Optionally, the encoder is operable to employ a default first prediction value for a
series of prediction values which are employed to create the output encoded data
(D2 or D3). More optionally, in the encoder, the default first prediction value is “0”.
More optionally, the first prediction value can also be maxValue div 2, maxValue div

2 + lowValue, highValue — lowValue, and so forth.

Optionally, the encoder is operable to apply additional encoding to generate the
encoded output data (D2), wherein the additional encoding includes at least one of:
run-length encoding (RLE), variable length coding (VLC), Huffman coding, arithmetic

coding, range coding.

Optionally, the encoder is operable to subdivide the input data (D1) into a plurality of
sections depending upon run-lengths of mutually similar bits therein which are
efficient for encoding using run-length encoding (RLE), Huffman coding, variable-

length encoding (VLE), range coding and/or arithmetic encoding.
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Optionally, in the encoder, the processing arrangement is implementing using
computing hardware operable to execute one or more software products recorded on

machine-readable data-storage media.

According to a second aspect, there is provided a method of using an encoder for

encoding input data (D1) including a sequence of numerical values to generate

corresponding encoded output data (D2 or D3), characterized in that the method

includes:

(a) applying to the input data (D1) a form of differential and/or sum encoding to
generate one or more corresponding encoded sequences, wherein

(b)  the one or more corresponding encoded sequences are subjected to a wrap
around a maximum value and/or a wrap around a minimum value, for

generating the encoded output data (D2 or D3).

Optionally, the method includes using the data processing arrangement to analyze
the input data (D1) and/or the one or more corresponding encoded sequences to
compute one or more offset, minimum or maximum values for applying to the one or
more corresponding encoded sequences for use in generating the encoded output
data (D2 or D3). More optionally, the method includes using for the one or more

offset values a value “0”.

Optionally, the method includes processing the numerical values including one or
more 1-bit values, and the encoder is operable to encode the input data (D1) in a bit-

by-bit manner.

Optionally, in the method, the one or more corresponding encoded sequences
represent changes in sequential values of the input data (D1).

Optionally, the method includes using the data processing arrangement to subdivide
the input data (D1) into a plurality of sections of data which are then separately
encoded. More optionally, the method includes applying the form of encoding
selectively to the sections of data only when data compression is thereby achievable
in the encoded output data (D2 or D3).
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Optionally, the method includes employing a default first prediction value for a series
of prediction values which are employed to create the output encoded data (D2 or
D3). More optionally, in the method, the default first prediction value is “0”. More
optionally, the first prediction value can also be maxValue div 2, maxValue div 2 +

lowValue, highValue — lowValue, and so forth.

Optionally, the method includes applying additional encoding therein to generate the
encoded output data (D2 or D3), wherein the additional encoding includes at least
one of: run-length encoding (RLE), variable length coding (VLC), Huffman coding,

arithmetic coding, range coding.

Optionally, the method includes implementing the processing arrangement using
computing hardware operable to execute one or more software products recorded on

machine-readable data-storage media.

According to a third aspect, there is provided a decoder for decoding encoded data
(D2 or D3) to generate corresponding decoded output data (D5), characterized in
that the decoder includes a data processing arrangement for processing one or more
portions of the encoded data (D2 or D3), wherein the data processing arrangement is
operable to apply a form of differential and/or sum decoding to one or more
corresponding encoded sequences of the one or more portions, wherein the one or
more encoded sequences are subjected to a wrap around a maximum value and/or a

wrap around a minimum value, for generating the decoded output data (D5).

Optionally, in the decoder, the data processing arrangement is operable to analyze a
range of values in the encoded data (D3 or D4) and to derive therefrom at least one
pre- and/or post- pedestal value. The post-pedestal value can be used to generate
the translated data before use of the inverse direct ODelta operator, and the pre-
pedestal value can be used to translate data after the direct inverse ODelta operator.
The at least one pedestal value is combined with the processed data for generating
the decoded output data (D5).
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The pedestal is optional for the decoder. The wraparound within a parameter
(maxValue) that uses the range (lowValue or highValue), the inverse operator (sum
vs. difference) and the inverse predictor (input value vs. output value) are important

elements of the decoder.

The wraparound within a parameter (maxValue) using a range (lowValue or
highValue), the inverse operator (sum vs. difference) and the inverse predictor (input

value vs. output value) are important elements of the decoder.

Optionally, in the decoder, the data processing arrangement is operable to apply to
data being processed therethrough an inverse of at least one of: run-length encoding
(RLE), variable-length coding (VLC), Huffman coding, arithmetic coding, range
coding. This processing is executed for the purpose of generating data (D4) from
data (D3).

In the decoder, the data processing arrangement is operable to employ a
wraparound within a parameter (maxValue) using a range (lowValue or highValue)

when implemented in the form of inverse ODelta decoding.

Optionally, the decoder is operable to decode the encoded data (D2 or D3) including
one or more 1-bit values, and the decoder is operable to decode the encoded data
(D2 or D3) in a bit-by-bit manner.

Optionally, in the decoder, the data processing arrangement is operable to compute
one or more offset, minimum or maximum values for applying to the one or more
encoded sequences for use in generating the decoded output data (D5). More

optionally, in the decoder, the one or more offset values have a value “0”.

Optionally, in the decoder, the one or more corresponding encoded sequences

represent changes in sequential values encoded into the encoded data (D2 or D3).

Optionally, in the decoder, the data processing arrangement is operable to apply to
data being processed therethrough an inverse of at least one of: run-length encoding

(RLE), variable-length coding (VLC), Huffman coding, arithmetic coding, range
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coding. This processing is executed for the purpose of generating data (D4) from
data (D3).

Optionally, in the decoder, the data processing arrangement is operable to assume a
default value of first prediction value in a series of data being decoded therethrough.
More optionally, in the decoder, the default value has a value “0”. More optionally, the
first prediction value can also be maxValue div 2, maxValue div 2 + lowValue,

highValue — lowValue, and so forth.

Optionally, in the decoder, the processing arrangement is implementing using
computing hardware operable to execute one or more software products recorded on

machine-readable data-storage media.

According to a fourth aspect, there is provided a method of using a decoder for

decoding encoded data (D2 or D3) to generate corresponding decoded output data

(D5), characterized in that the method includes:

(a) using a data processing arrangement for processing one or more portions of
the encoded data (D2 or D3), wherein

(b) the data processing arrangement is operable to apply a form of differential
and/or sum decoding to one or more corresponding encoded sequences of the
one or more portions, wherein the one or more encoded sequences are
subjected to a wrap around a maximum value and/or a wrap around a

minimum value, for generating the decoded output data (D5).

Optionally, the method includes operating the decoder to decode the encoded data
(D2 or D3) including one or more 1-bit values, and the decoder is operable to decode
the encoded data (D2 or D3) in a bit-by-bit manner.

Optionally, the method includes operating the data processing arrangement to
compute one or more offset, minimum or maximum values for applying to the one or
more encoded sequences for use in generating the decoded output data (D5). More

optionally, in the method, the one or more offset values have a value “0”.
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Optionally, in the method, the one or more corresponding encoded sequences

represent changes in sequential values encoded into the encoded data (D2 or D3).

Optionally, the method includes using the data processing arrangement to apply to
data being processed therethrough an inverse of at least one of: run-length encoding
(RLE), variable-length coding (VLC), Huffman coding, arithmetic coding, range
coding. This processing is executed for the purpose of generating data (D4) from
data (D3).

Optionally, the method includes operating the data processing arrangement to
assume a default value of first prediction value in a series of data being decoded
therethrough. More optionally, in the method, the default value has a value “0”. More
optionally, the first prediction value can also be maxValue div 2, maxValue div 2 +

lowValue, highValue — lowValue, and so forth.

Optionally, the method includes implementing the processing arrangement using
computing hardware operable to execute one or more software products recorded on

machine-readable data-storage media.

Optionally, the method includes using the data processing arrangement to employ a
wraparound for a parameter (maxValue) using range (lowValue or highValue) when

implemented the form of inverse ODelta decoding.

According to a fifth aspect of the invention, there is provided a codec including at
least one encoder pursuant to the first aspect of the invention for encoding input data
(D1) to generate corresponding encoded data (D2 or D3), and at least one decoder
pursuant to the third aspect of the invention for decoding the encoded (D3 or D4) to

generate corresponding decoded data (D5).

According to a sixth aspect of the invention, there is provided a software product
recorded on machine-readable data storage media, characterized in that the software
product is executable upon computing hardware for executing a method of encoding

data pursuant to the second aspect of the invention.
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According to a seventh aspect of the invention, there is provided a software product
recorded on machine-readable data storage media, characterized in that the software
product is executable upon computing hardware for executing a method of decoding

data pursuant to the fourth aspect of the invention.

It will be appreciated that features of the invention are susceptible to being combined
in various combinations without departing from the scope of the invention as defined

by the appended claims.

Description of the diagrams

Embodiments of the present invention will now be described, by way of example

only, with reference to the following diagrams wherein:

FIG. 1 is an illustration of a codec including an encoder and a decoder
implemented to function pursuant to the present invention;

FIG. 2 is an illustration of steps of a method of encoding data as executed in
the encoder of FIG. 1; and

FIG. 3 is an illustration of steps of a method of decoding data as executed in
the decoder of FIG. 1.

In the accompanying diagrams, an underlined number is employed to represent an

item over which the underlined number is positioned or an item to which the

underlined number is adjacent. A non-underlined number relates to an item identified

by a line linking the non-underlined number to the item. When a number is non-

underlined and accompanied by an associated arrow, the non-underlined number is

used to identify a general item at which the arrow is pointing.
Description of embodiments of the invention
When describing embodiments of the present invention, following acronyms and

definitions will be used, as provided in Table 2:

Table 2: Acronyms and definitions

Acronym Description
ADC Analog-to-digital converter
Codec Encoder and corresponding decoder for digital data
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DAC Digital-to-analog converter

DB Database in Random Access Memory (RAM) or Read Only Memory (ROM)

DC DC-component of a given image, namely a mean of the image, namely corresponding
to an average brightness and represents a lowest spatial frequency component of an
image

RLE Run-length encoding

ROI Region of interest

ROM Read Only Memory

VLC Variable-length code

In overview, with reference to FIG. 1, the present invention is concerned with a direct
ODelta encoder 10 and its associated method of operation. Moreover, the present
invention is also concerned with a corresponding inverse ODelta decoder 20.
Embodiments of the invention employ a direct ODelta operator which is a bit-
optimized version of the aforementioned known Delta encoding method as well as a
range-optimized version for other data. ODelta encoding is used in computing
hardware that employs variable-length data words, for example 8/16/32/64 bits,
and/or employs variable-length encoding of 8/16/32/64 bit data elements whose
original value is expressed in a range of 1 to 64 bits, and a corresponding encoded
value is generated with 1 to 64 bits. Of course, the encoder 10 and the decoder 20
are, in any case, aware of which sort of number values the original data D1 may
contain, and therefore its definition or transmission will not be further elucidated here.
It is merely assumed that the number range (MIN and MAX) is known, and that the

data D1 can be utilized.

Known Delta coding methods increase the range of values from original (MIN .. MAX)
to a result (MIN-MAX .. MAX-MIN). This means that it is also creating negative
values when the original data contains only positive values. The ODelta operator
pursuant to the present invention never creates a value that is not in the range of
corresponding original values, and so it does not increase a used data range, and
thus is beneficially employed when executing entropy reduction and associated data
compression. For example, known Delta encoding methods operate with streams of
5-bit data, namely values from 0 to 31, such that generated data values will be in a
range -31 to +31, namely 63 values which is substantially expressible using 6 bits; in
contradistinction, the direct ODelta generated values are still in a range of O to 31

when generated from aforesaid streams of 5-bit data. Moreover, whereas known
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methods of Delta encoding are not possible to be implemented recursively, the direct,
or inverse, ODelta operator pursuant to the present invention is susceptible to being
implemented recursively and yet it still preserves the used range of values. The
range of value does not need to be bit-exact, for example values of O to 31 are
defined by 5 bits; the ODelta operator is able to use any range of values, for example

a range of values from 0 to 25, whilst still operating properly.

In principle, the ODelta methods herewith described can always function directly on a
basis of an existing data range, of which will be given an example below. The ODelta
operation can also be enhanced by delivering information indicative of a lowest
occurring number value in the data (lowValue) and a highest occurring number value
in the data (highValue). It is to be noted that lowValue >= MIN, and highValue <=

MAX and that these values are optional.

Two examples of direct and inverse ODelta operators pursuant to the present
invention will be described below. A first example of the direct and inverse ODelta
operator is efficient and relative simple to implement, for example in electronic
hardware and/or computing hardware operable to execute one or more software

products recorded on machine-readable data storage media.

When implementing direct or inverse ODelta operators pursuant to the present
invention, beneficially all the original sequence of data values are positive and the
lowest value is 0. Optionally, some offset value, namely pre- or post- pedestal value,
can be employed to shift the data values so that they are all positive in value and the
lowest value is “0”. The ODelta operator pursuant to the present invention is
susceptible to being employed with all types of data in a direct manner,; it is typically
capable of providing data compression, namely reducing communicated data rate,
because when the pedestal value is added to all values or subtracted from all values,
the range of data values might be defined using fewer bits. For example, original
data values, prior to an application of the direct or inverse ODelta operator, are in a
range from -11 to +18; such a range can be translated to a range of 0 to 29 by using
a pedestal value of 11 and the translated range thereafter described by 5-bits. When

such a pre- or post- pedestal value is not employed, the original data values require
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at least 6 bits to describe them, and often, in practice, a full 8-bit signed byte is

employed for convenience.

A similar optimization of data range is also possible when using a generalized direct
or inverse ODelta operator. Thus, if the direct or inverse ODelta operator, or some
other method, creates the data values that can be presented with a pedestal value
smaller than the full range of values, then that range optimization can be
implemented in any phase in the ODelta encoding method. When the pedestal
value, whether negative or positive in sign, is used, it has also to be delivered from
the encoder 10 to the decoder 20 as elucidated later with reference to FIG. 1, FIG. 2
and FIG. 3.

The direct version of the 1-bit ODelta operator, namely method 1 and method 3,
creates a value “0” when there is no change in bit values in original data D1 in FIG. 1,
and a value “1” when a change in bit values on the original data D1 occurs. The
prediction for the first bit in the original data is a value “0”, and so the value of the first
bit in the original data D1 is preserved. It is also possible to employ a predicted value
first bit in the original data as a value “1”, but such a choice does not provide any
coding benefits; for this reason, no selection needs to be delivered when the

prediction is optionally always assumed to be a value “0” by default for 1-bit data.

An example of direct ODelta encoding pursuant to the present invention will now be
provided. An original sequence of bits, namely twenty seven bits, including

seventeen “1’s” and twenty “0’'s”, is provided in Equation 1 (Eq. 1) as follows:

0101011001000101000000000001111111111
Eqg. 1

whose entropy E is calculable from Equation 2 (Eq. 2):

E=17 *1ogloﬁ—;j + 20*@—(0 —11.08523 Eq. 2
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A number of bits, namely Min_bit, required to code the entropy E in Equation 2 (Eq.
2) is calculable from Shannon’s source coding theorem, as described in aforesaid

documents D7 and D8, as provided in Equation 3 (Eq. 3):

Min _ bits = =36.82 bits Eq. 3

_E
loglo(z)
When the original sequence of bits is subject to a direct ODelta operator, namely

method 1 and method 3, there is generated a sequence of bits as follows, including

thirty seven bits of which there are thirteen “1’s” and twenty four “0’s”:

0111110101100111100000000001000000000

Eq. 4
whose entropy E is calculable from Equation 5 (Eq. 5):
E =13*log,, 37 +20%* 37 =10.41713 Eq. 5
13 24

which is expressible in a minimum number of bits, namely Min_bits, according to
Equation 6 (Eq. 6):

Min _ bits = =34.60 bits Eq. 6

_E
log,, (2)

The sequence of bits in Equation 4 (Eq. 4) is beneficially subject to further encoding
to achieve data compression, for example run-length encoding (RLE), Huffman
coding, arithmetic encoding, range encoding, Entropy Modifier encoding or SRLE

encoding.

The ODelta operator reduces the amount of bits required when its associated entropy
coding method is applied, for example RLE or SRLE is used for the operated data,
for example as in Equation 4 (Eq. 4), instead of the original data, for example as in

Equation 1 (Eq. 1); this 1-bit direct ODelta operator, namely method 1 and method 3,
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creates “1's” when there are a lot of changes in the original sequence of bits in
Equation 1 (Eq. 1), and it generates “0’s” when there is a long stream of mutually

similar bits in the original sequence of bits in Equation 1 (Eq. 1).

The inverse version of the ODelta operator, namely method 1 and method 3,
changes a bit value from a value “0” to a value “1”, or from a value “1” to a value “0”
as appropriate, when there is a value “1” in the encoded stream of data, namely data
D2, and does not change the bit value when there is a “0” value in the encoded
stream of data D2. When this ODelta operation is executed for the direct ODelta-
operated bit stream of data D2, the original stream of data D1 is regenerated as the
decoded data D5; however, as aforementioned, additional coding such as VLC or
Huffman coding is beneficially employed which also needs to be taken into account;
this means that data D3 is generated from data D2 using a forward operation of
entropy encoder and data D4 is generated from data D3 using an inverse operation

of entropy decoder.

Beneficially, the original stream of data D1 is subdivided into two or more sections
prior to encoding being applied thereto. Such subdivisions provide an opportunity for
more optimization to be employed when encoding the original stream of data D1. For
example, such subdivision is beneficial because changeable sequences in the data

»

D1 generate more “1’s” when direct ODelta encoded, namely method 1 and method
3, whereas flat unchangeable sequences, namely “flat” sequences, create more “0’s”,
for example desirable for subsequent VRL encoding or Huffman encoding, so
entropy E can be reduced for the entire bit stream constituting the data D1 by
dividing it into a plurality of sections which can be separately encoded as

aforementioned.

An example of direct ODelta encoding pursuant to the present invention will next be
described when a plurality of sections are employed which are mutually separately
encoded. A first section including a sequence of original single bits includes sixteen

bits in total, namely seven “1’s” and nine “0’s”, as follows in Equation 7 (Eq. 7):

0101011001000101 Eq. 7
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wherein H(X) = 4.7621 and B = 15.82; “H” denotes entropy and “B” denotes Max_bit.
When Equation 7 (Eq. 7) sequence of original bits is subject to a direct ODelta

operator, a sequence of corresponding transformed bits is provided as in Equation 8
(Eq. 8):

0111110101100111 Eq. 8

wherein H(X) = 4.3158 and B = 14.34.

A second section including a sequence of original single bits includes as follows in
Equation 9 (Eq. 9):

000000000001111111111 Eq. 9

wherein H(X) = 6.3113 and B = 20.97. When Equation 9 (Eqg. 9) sequence of original
bits is subject to a direct ODelta operator, a sequence of corresponding transformed

bits is provided as in Equation 10 (Eq. 10):

000000000001000000000 Eq. 10

wherein H(X) = 1.7460 and B = 5.80. In these examples, as aforementioned, H(X) is
representative of entropy E, and B is representative of a minimum number of bits

required for coding.

The best compression in this example from Equation 7 (Eq. 7) and Equation 10 (Eq.
10) is achieved when both sections are separately subjected to a direct ODelta
operator (namely encoding to 14.34 bits + 5.80 bits = 20.14 bits in total); this requires
less bits than the 36.82 bits that were originally required, direct ODelta-operated bits
requiring 34.60 bits, or the original number of bits required after splitting ( = 15.82 bits
+ 20.97 bits = 36.79 bits). Beneficially, splitting of an original stream of bits in the

data D1 into sections is executed automatically by analyzing entropy E of the original



10

16 02 15_

N
o

25

30

-18 -

data D1 and the corresponding entropy H of the modified data, namely as included in

the data D2, piece-by-piece.

Data compression is optionally implemented in a coarse manner merely by dividing
portions of the data D1 to a new section to be encoded, when there are multiple long
run sections available in the data D1, provided that there is a big enough area of data
wherein bit values change rapidly along the sequence. Optionally, some sections of
the data D1 are encoded without employing the direct ODelta operator, for example if
there is a long run of mutually similar bits with relatively few individual different bits
therebetween; in such case, the direct ODelta operator does not impart significant

benefit for data compression purposes.

Splitting the data D1 into smaller sections has a disadvantage of generating an
additional overhead which contributes data to the encoded data D2. Such overhead
includes, for example, information indicative of the amount of data bits or data bytes
associated with every new section. However, it is always found to be necessary to
transmit at least a certain amount of overhead data values, and thus there is only one

extra overhead data value when a given data is split into two sections of data.

To achieve an encoded bit stream that can later be decoded, entropy encoding is
beneficially implemented after the direct ODelta operator, for example VLC,
Arithmetic coding, RLE and similar. It is easier and more computationally efficient to
execute optimization computations based on calculated entropy E and minimum bit
estimation values in comparison to actual data encoding. Such an order of execution
enables a considerable speed optimization, and often achieves an optimal data
compression result in the encoded data D2. Alternatively, it is feasible to execute
entropy optimization in such a way that original bit, alphabet, number, byte and word
data, namely the data D1, is first coded with some other method to generate an
entropy-optimized bit stream, and after that, the direct ODelta operator is used to
modify the entropy-optimized bit stream to provide corresponding encoded data,
namely the data D2. Moreover, this ODelta operated data can still be encoded with

other encoding methods from the data D2 to generate the data D3.
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The generalized direct ODelta operator employs a parameter that describes a range
of values used in the data D1, namely a value or number of bits that are needed to
present the values. Moreover, the ODelta operator is employed in a method that
enables the use of positive and negative pedestal values. For example, if data D1 is
presented with seven bits, namely has values from “0” to “127” supported, but it
contains only values in a range of “60” to “115”, then, when a pedestal value of -60 is
applied to the data D1, there is thereby generated translated data having values in a
range of “0” to “55” that can also be represented as values containing only six bits,
namely a degree of data compression is thereby feasible to achieve. The
generalized direct ODelta operator thus improves results when a full range of data
values is present in the data D1, namely represented in seven bits and

conventionally represented by 8-bit bytes.

Pursuant to the present invention, direct ODelta values, namely method 1, are
susceptible to being computed using a procedure as described by an excerpt of

example software code as follows for data that has only positive values:

maxValue = power(2, bits) = power(2, 7) = 128
predictionValue = maxValue div 2 = 64

for all pixels

begin
if(original Value >= predictionValue) then
ODeltaValue = original Value — predictionValue
else
ODeltaValue = maxValue + originalValue — predictionValue
predictionValue = originalValue

end

An example will now be provided to elucidate further the ODelta operator. An original

sequence of values is as follows in Equation 11 (eq. 11):

65, 80, 126, 1, 62, 45, 89, 54, 66 Eq. 11



10

15

16 02 15

20

25

30

-20 -

Corresponding Delta coding values are as follows in Equation 12 (Eq. 12):

63, 15, 46, -125, 61, -17, 44, -35, 12 Eq. 12

Corresponding direct ODelta coding values are as follows in Equation 13 (Eq. 13):

1,15, 46, 3, 61, 111, 44, 93, 12 Eq. 13

wherein wraparound within parameter maxValue is employed.

An inverse ODelta operator, namely method 1, is useable for generating inverse

ODelta values, for example as implemented by example software code as follows:

maxValue = power(2, bits) = power(2, 7) = 128
predictionValue = max Value div 2 = 64

for all pixels

begin
ODeltaValue = originalValue + predictionValue
if (ODeltaValue >= maxValue) then
ODeltaValue = ODeltaValue — maxValue
predictionValue = ODeltaValue

end

When this software code is executed and applied to Equation 13 (Eq. 13), it

generates values as provided in Equation 14 (Eq. 14):

65, 80, 126, 1, 62, 45, 89, 54, 66 Eq. 14

This example uses maxValue as a power-of-two value. This is not mandatory and the
maxValue can also be any value that is larger than a highest data value, or value

larger than the used range, if negative values are also available, or range is modified
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by pre-pedestal in a given sequence of data. There will be a further example later

showing this feature.

To summarize the foregoing with reference to FIG. 1, the present invention is
concerned with the encoder 10 and the decoder 20. Optionally, the encoder 10 and
the decoder 20 are employed in combination as a codec indicated generally by 30.
The encoder 10 is operable to receive original input data D1 which is encoded using
a direct ODelta method to generate corresponding encoded data D2 or D3. The
encoded data D2 or D3 is optionally communicated via a communication network 40
or stored on data storage media 50, for example a data carrier such as an optical
disc read-only-memory (ROM) or similar. The decoder 20 is operable to receive the
encoded data D2 or D3, for example streamed via the communication network 40 or
provided on the data storage media 50, and to apply an inverse ODelta method to
generate corresponding decoded data D5, namely substantially similar to the original
data D1. The encoder 10 and the decoder 20 are beneficially implemented using
digital hardware, for example computing hardware which is operable to execute one
or more software products, for example codes as provided as example embodiments

in this description.

The ODelta method as executed in the encoder 10 employs steps as depicted in FIG.
2. In an optional first step 100, the input data D1 is processed to find a range of
values of its data elements. In an optional second step 110, from the range of
values, an offset, namely a pre-pedestal, is computed for translating the data
elements to a positive regime to generate a corresponding set of translated
elements. In a third step 120, the elements, optionally translated in the second step
110, are then subject to direct ODelta encoding to generate corresponding ODelta
encoded values. In a fourth step 130, the ODelta encoded values and the optional
pedestal value are then separately encoded, for example using run-length encoding
(RLE) or Huffman coding, to generate the data D3 from data D2. The pedestal value
is not always compressible, thus requiring it to be delivered using a suitable amount
of bits from the encoder 10 to decoder 20. Moreover, the pedestal value is an
optional feature for the direct ODelta operator. Especially, when the direct ODelta
operator is implemented for 1-bit data, it does not need a pedestal value at all, and

then steps 100 and 110 are always ignored. When a pedestal value is also used in
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the step 110, the range value presenting the highest value should be updated within
it. The number of different values, namely maxValue, should be known also by the
decoder 20, or otherwise the encoder 10 should deliver it to the decoder 20 within
compressed data. Optionally, at least one of the encoder 10 and the decoder 20
operate in a recursive manner, for example to find an optimal manner in which to
subdivide the input data D1 into sections for encoding so as to provide for optimal

compression of the data D1 to generate the encoded data D2.

The inverse ODelta method as executed in the decoder 20 employs steps as
depicted in FIG. 3. In a first step 200, the data D2/D3 or D4 is subjected to inverse
encoding to that which is employed in the aforesaid step 130 to generate decoded
ODelta data, wherein the decoded ODelta data has ODelta-encoded values and
optionally have a separate pedestal value. In a second step 210, the ODelta
encoded values are decoded to generate a sequence of data elements. In a third
step 220, the sequence of data elements are translated using the optional pre-
pedestal value to generate the decoded data D5. Again, it is possible to execute the
method without needing to employ a pedestal value, for example when performing 1-
bit encoding, thereby enabling the step 220 to be ignored. Furthermore, the decoder
20 should also know the maxValue to be able to decode data elements received

thereat in a proper manner.

By employing the pedestal to achieve only positive values, more efficient data
compression in the data D2 or D3 is capable of being achieved. If all the data values
are already positive values, there is no need to add any pedestal value. Of course,
negative pedestal values are optionally, employed to reduce the available range, as

shown in the next example, but it is not mandatory.

The methods in FIG. 2 and FIG. 3 can be optionally further optimized by using only
the available values subject to ODelta coding. Such optimization requires that used
values are known. For example, in an example in the foregoing, only values from 1
to 126 are present in the original data set D1. The pedestal value is then 1. When
the pre-pedestal value has been reduced from the original data D1, following values

are thereby generated in Equation 15 (Eq. 15):
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64,79, 125, 0, 61, 44, 88, 53, 65 Eq. 15

From Equation 15 (Eqg. 15), the maximum value of 125 is determined (= original max
— pedestal = 126 - 1), such that the maximum value (= maximum Delta value) can
now be 125, or maxValue can be at smallest 126. Now, it is necessary to store
and/or deliver these values and then the previous example can be modified by

changing process values as follows:

maxValue = 126 (“0” to “125” => 126 different values)

predictionValue = maxValue div 2 = 63

Corresponding direct ODelta operator values are provided in Equation 16 (Eq. 16):

1,15, 46,1, 61, 109, 44,91, 12 Eq. 16

It will be appreciated that all “negative Delta values” are now reduced by a factor of 2
(namely = range change = 128 — 126). Similarly, in the decoder 20, the process

values have to be changed as follows:

maxValue = 126

predictionValue = maxValue div 2 = 63

Corresponding inverse ODelta values are as follows in Equation 17 (Eq. 17):

64,79,125, 0, 61, 44, 88, 53, 65 Eq. 17

When the pre-pedestal value is added to Equation 17 (Eq. 17), a following result in
Equation 18 (Eqg. 18) is obtained corresponding to original data in Equation 15 (Eq.

15), namely:

65, 80, 126, 1, 62, 45, 89, 54, 66 Eq. 18
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In this example, the range of values is nearly full, so there is a relative modest benefit
derived from applying the direct ODelta operator with pedestal and maximum values.
However, a reduction in entropy E can still be achieved, namely resulting in less
values in a frequency table or in a code table when they are properly delivered.

Greatest benefits can be achieved when the range is less used.

An example embodiment of a practical 1-bit direct and inverse ODelta method,
namely method 1 or method 3, of encoding and decoding data will now be provided
by way of executable computer software code; the method employs the aforesaid
direct and inverse ODelta operators, namely method 1 or method 3. The software
code is operable, when executed upon computing hardware, to process bits from one
byte buffer to another byte buffer. In the software code, GetBit, SetBit and ClearBit
functions always update a HeaderBits value. A Headerlndex value is also updated
when a next bit will be in a next byte. Optionally, the software code can be
optimized, so that only one set of Headerlndex and HeaderBits values are used for
source and destination, such that values are updated only when a given bit is written

to the destination buffer.
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procedure EncodeDDeltau(APrSre | PRyte; ASrcDstSitben : PCardinal APROst : PRyte)
var
iSreHeaderindex, [SrcHeaderSits, Hindex,
iDsiHeaderinday, iDstHeaderBits © Cardingl;
bEL. blastBi : Boolean:
beagin
# Reset offsets
BreHeaderindex =
1SreHeadaBits (= 0y

13

DstHeaderindex =

iDstHeaderBits = 0

SO RS i

and
else ClearBRIAPRDst, @iDstHeaderindex, @iDsiHeaderBus)y,

&

function DecodeOleltn 1u{APIEIC  Plyte, ASrUsiBithen » PCardingl, APTst PByte)
Baolaan:

var
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iSrcHeaderindex, [BrcHeaderBits, Hndex,

iDstHeaderindex, iDstHeaderBits - Cardinal;

bRY, blLastBil | Boolsarn:
begin

i Reset offsets

iSroHeaderindex ;= 0;

iSrcHeader8its = 0;

DstHeaderindex = 0

iDatHeaderBits = §;

i Inttialise delts valus
bl astBit = False,

# Gothrough all bitg

for iindex = 0 {0 ASreDsiBitben®1 do

begin
{ Read bt
LB = GelBY{ARPUSH. §

H Changs it value i sourgs W

AT (DRI = True) then

if (blastBii= Trugl then

N

oy
2
{

%

# Set destination bl based on bit value (True or False)

if (bLastBib) then

SetBittAPrDst, @iDstHeaderlndex, @iDstHeaderBits)
else ClearBi{APYDst, @DstHeaderindex, @ DstHeaderBits);

gnd:
end;
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The aforementioned direct and inverse ODelta operators, namely method 1 or
method 3, are beneficially employed to compress any type of data that is in a digital
format, for example video data, image data, audio data, graphics data, seismological
data, medical data, measurement values, reference numerals and masks. Moreover,
analog data is also compressible using the direct ODelta operator when firstly
converted to corresponding digital data, for example by use of ADC’s before the
compression. When inverse ODelta operator is used then DAC’s can be used after
the operation, if it is desired that the data be converted back to analog data.
However, it will be appreciated that the direct ODelta operator by itself is not usually
effective at compressing data, but is capable of providing effective data compression
when employed in combination with other encoding methods, for example variable-
length coding (VLC), arithmetic coding, range coding, run-length encoding, SRLE,
Entropy Modifier and so forth. These encoding methods are used for data D2 after
the direct ODelta operator is employed in the encoder 10. The encoded data D2 has
to be correspondingly decoded back before the resulting data is delivered to the
inverse ODelta operator implemented in the decoder 20. The ODelta operator can
also be employed with other types of entropy modifiers. In certain situations, the
direct ODelta operator can result in an increase in entropy E, and data compression
algorithms are beneficially operable to employ the direct ODelta operator selectively
for use in encoding data only when it provides a beneficial data compression
performance, for example it is employed selectively based upon a nature of data to
be compressed, for example applied selectively to selected portions of the input data

D1 as aforementioned.

The direct ODelta operator has been devised, for example, to be employed in
combination with a block encoder as described in a US patent application no. US
13/584, 005, which is hereby incorporated by reference, and the inverse ODelta
operator has been devised to be employed in combination with a block decoder as
described in a US patent application no. US 13/584, 047 which is hereby
incorporated by reference. Optionally, the direct ODelta operator and inverse ODelta
operator are beneficially employed in combination with a multilevel coding method as
described in US patent application no. US13/657, 382, which is hereby incorporated
by reference. Beneficially, all types of 1-bit data, for example the data D1, that

include binary states are subject to the 1-bit version of the direct ODelta operator to
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generate corresponding transformed data, which is then thereafter subjected to
actual entropy encoding to generate the encoded data D2 or D3. Optionally, as
aforementioned, the direct ODelta operator is employed selectively depending upon

a nature of the original data D1.

Optionally, it is feasible to employ other methods of modifying entropy of data before
or after the direct ODelta operator. For example, the direct ODelta operator can also
be used directly for multi-bit data within a generalized version of the direct ODelta
operator. Moreover, the aforesaid 1-bit version of the direct ODelta operator is
beneficially employed for multi-bit data, after all used bits are first put into a serial

sequence of bits.

When multiple methods are employed for data compression in conjunction with the
direct ODelta operator in the encoder 10, corresponding inverse operations are

performed in reverse order in the decoder 20, for example:

The following sequence of methods are employed in the encoder 10:

[data D1] => direct ODelta (method 2)
=>VLC-
=>EM
=> Arithmetic coding
=> [data D3] Eq. 19

The following inverse sequence of methods are employed in the decoder 20:

[data D3] => inverse Arithmetic coding
=>inverse EM
=>inverse VLC
=> inverse ODelta (method2)
=> [data D] Eq. 20

wherein “VLC” denotes variable-length coding, and “EM” denotes entropy modifying.
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The ODelta operator as described in the foregoing is reversible and lossless.
Moreover, the ODelta operator is optionally susceptible to being implemented
specifically for 1-bit data streams, but also for other data. Beneficially, all types of
data are susceptible to being processed using a generalized version of the direct
ODelta operator. Beneficially, the direct ODelta operator is employed when data is to
be compressed, and a corresponding inverse ODelta operator is employed when
compressed data is to be decompressed. Optionally, when the ODelta operator is
employed, the direct ODelta operator and its corresponding inverse operation are
employed in a reverse order; in other words, the inverse ODelta operator is
performed temporally first on an original bit stream, thereafter followed by the direct
ODelta operator, for regenerating the original bit stream. One ODelta operator
increases entropy and the other ODelta operator decreases entropy. It is a very rare
case that the direct ODelta operator should not modify entropy at all, and then neither
inverse ODelta operator modifies entropy. It is to be noted that the when the direct
and inverse ODelta operators are used, for example for method 1, then the inverse
order of these operations are similar to the normal order of method 4. Similar change

of order is possible also with method 2 and method 3.

In the 1-bit version, the direct ODelta operator starts without prediction, namely it
assumes by default a prediction of an initial “0” value. In a generalized version, the
ODelta operator starts with a prediction that represents half of a usable data range;
for example, if 5-bits are used for input data values in the data D1, namely thirty two
different values in a range from “0” to “31”, the prediction value is 32> = 16.
Beneficially, the ODelta operator needs to be provided with information regarding a

useable data range for data elements to be processed using the operator.

Embodiments of the invention described in the foregoing make it possible to reduce
the entropy E that is presented in the data D1 as bits or any digital values. The direct
ODelta operator nearly always provides improved entropy reduction as compared to
Delta coding. Only the case where Delta coding is used together with byte
wraparound, and the difference ODelta operation with original prediction (method 1)
uses the values maxValue=256, lowValue=MIN=0, and highValue=MAX=255,

produces the identical output result within it. If another direct ODelta method is used,
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or if the entire data range is not available in the input data, then the ODelta operator
produces better results by sending the selected method or lowValue and/or
highValue, namely that modifies also maxValue automatically. Smaller entropy
enables data to be compressed with higher data compression ratios. Higher data
compression ratios enable smaller capacity data storage to be employed, and also
enable slower data bandwidths to be employed when communicating compressed

data, with corresponding reduction in energy consumption.

In the foregoing, it will be appreciated that a form of difference and sum computation
is executed in the encoder 10, and a corresponding inverse computation is
performed in the decoder 20. It is also possible to use another prediction method
used in the encoder 10, and a corresponding inverse prediction is then performed in
the decoder 20. This means that there are actually at least four different direct
ODelta methods as well as at least four corresponding inverse ODelta methods. A
detailed and exact description of these methods follows. Optionally, the computations
are performed in a recursive manner to obtain a higher degree of data compression
in the encoded data D2 (or D3). When executing such recursive computations, a
changing number range is employed as a function of how many recursive
computations have been employed. For example, in the encoder 10, a following
sequence of computations is performed on the data D1 to generated the encoded
data D2 (or D3):

[Data D1] edirect ODelta (method 3) =>
edirect ODelta (method 3) =>
eEM =>
edirect ODelta (method 1) =>
eVLC [Data D3] Eq. 21

and corresponding inverse operations are performed in the decoder 20:

[Data D3] dvLC =>
dinverse ODelta (method 1) =>
dEM =>
dinverse ODelta (method 3) =>



10

16 02 15_

N
o

25

30

-31-

dinverse ODelta (method 3) [Data D]
Eq. 22

Each time data is operated upon in these four methods, as denoted by Equations 21
(Eq. 21 corresponding to method 1), Equation 22 (Eq. 22 corresponding to method
2), Equation 23 (Eq.23 corresponding to method 3), and Equation 24 (Eq. 24
corresponding to method 4), it is optionally possible to try to use all methods,
because one of these methods might decrease entropy of data being processed
more than the other methods. Upon optimizing the use of methods within the
encoder 10 and/or the decoder 20, it is advantageous to use the same or different
methods as many times and as long as the selected method, or methods, decrease

entropy, as compared to the amount of information in the data required.

The difference operation represents a remainder of consecutive number values;
correspondingly, the sum operation represents a sum of consecutive number values.
These operations as executed in the encoder 10 have their own corresponding
inverse operations in the decoder 20. The difference or sum can be computed based
on the current input value and the previous input or result value that is used as a
prediction value. Other prediction values could also be used and they might e.g. use
earlier input and output values in the encoder to create the prediction as long as it is

reversible to do so also in the decoder.

None of such methods compress data significantly within the encoder 10 and
decoder 20, but all methods are beneficially employed to reduce entropy, so that
some other compression method can then compress the entropy-reduced data more
efficiently. Such other compression method is optionally at least one of: Huffman
coding, arithmetic coding, range coding, RLE coding, SRLE coding, entropy modifier
coding. However, for all methods, it is necessary to communicate a few number
values with which the operation and its inverse operation can always be executed
exactly, for example if lossless compression and subsequent lossless decompression
of data is to be achieved. Of course, the encoder 10 and the decoder 20 have
information regarding which sort of number values are contained in the input data D1.
Beneficially, it is assumed that the number range, namely defined by MIN and MAX,

is known. In principle, the methods can always function directly on the basis of an
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existing data range. The number values that the operations need are the lowest
occurring number value (lowValue) and the highest occurring number value
(highValue); lowValue is greater than or equal to MIN, and highValue is less than or
equal to MAX.

On a basis of these values, other necessary number values can be derived.
Beneficially, these values are communicated in various forms, wherein missing
values are beneficially computed. For example, if two values from a set [“lowValue”,
“highValue”, “number”] are known, the “number” is [highValue — lowValue], then a
third value can be computed therefrom. Omitting certain values in the data D2, and
then deriving them in the decoder 20 is capable of providing greater data

compression in the data D2.

In addition to these values, a number P is required which can be used as a previous
value in computation of the first value, namely “prediction”. A value between “0” and
a “‘number’ value can always be chosen for the number P, namely “prediction’.
Moreover, the aforesaid operations need to be provided with the value “maxValue”, in
order to function recoverably when decoding the data D2/D3 or D4 in the decoder 20,
namely to shrink a value range that the operations generate to be as small as
possible. However, this “maxValue” has to be larger than the “number”, and
beneficially it will have a value “number” + 1. Optionally, depending a nature of the
data D1, the first “prediction” value can be chosen to be “0” as aforementioned, for
example if the data D1 is assumed to contain more small values than larger ones;
alternatively, the first “prediction” value can be chosen to be equal to the “number”, if
the data D1 is assumed to contain more larger values than smaller ones. In an event
that an assumption is not made for the magnitude of values, then it is desirable to

use a value “maxValue div 2” for the “prediction” value.

Examples of operations performed in computing hardware when implementing

embodiments of the present invention will now be described.

In the encoder 10, the first direct difference operation, namely method 1, is

beneficially implemented as follows; for all data values, an output value, namely



10

15

20

16 02 15

25

30

-33-

“result”, that corresponds to the input value, namely “original” value, is computed in a

software loop:

result = original — prediction

if result < lowValue then result = result + maxValue

Finally, the prediction value for the next input is set to be equal to the current input,

namely:

prediction = original

In the decoder 20, the first inverse difference operation, namely method 1, is
beneficially implemented as follows: for all data values, an output value, namely
“result’, that corresponds to the input value, namely “original’ value, is computed in a

software loop:

result = original + prediction

if result > highValue then result = result - maxValue

Finally, the prediction value for the next input is set to be equal to the current result,

namely:

prediction = result

In the encoder 10, the second direct difference operation, namely method 2, is
beneficially implemented as follows; for all data values, an output value, namely
“result”, that corresponds to the input value, namely “original” value, is computed in a

software loop:

result = original — prediction

if result < lowValue then result = result + maxValue

Finally, the prediction value for the next input is set to be equal to the current result,

namely:
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prediction = result

In the decoder 20, the second inverse difference operation, namely method 2, is
beneficially implemented as follows: for all data values, an output value, namely
“result’, that corresponds to the input value, namely “original” value, is computed in a

software loop:

result = original + prediction

if result > highValue then result = result - maxValue

Finally, the prediction value for the next input is set to be equal to the current input,

namely:

prediction = original

In the encoder 10, the first direct sum operation, namely method 3, is beneficially
implemented as follows: for all data values, an input value, namely “result’, that
corresponds to the input value, namely “original’, is computed in a software loop as

follows:

result = original + prediction

if result > highValue then result = result — maxValue

Finally, the prediction value for the next input is set to be equal to the current input as

follows:

prediction = original

In the decoder 20, the first inverse sum operation, namely method 3, is beneficially
implemented as follows: for all data values, an input value, namely “result’, that
corresponds to the input value, namely “original’, is computed in a software loop as

follows:
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result = original - prediction

if result < lowValue then result = result + maxValue

Finally, the prediction value for the next input is set to be equal to current result,

namely:

prediction = result

In the encoder 10, the second direct sum operation, namely method 4, is beneficially
implemented as follows: for all data values, an input value, namely “result’, that
corresponds to the input value, namely “original’, is computed in a software loop as

follows:

result = original + prediction

if result > highValue then result = result — maxValue

Finally, the prediction value for the next input is set to be equal to the current result

as follows:

prediction = result
In the decoder 20, the second inverse sum operation, namely method 4, is
beneficially implemented as follows: for all data values, an input value, namely

“result’, that corresponds to the input value, namely “original’, is computed in a

software loop as follows:

result = original - prediction

if result < lowValue then result = result + maxValue

Finally, the prediction value for the next input is set to be equal to current input

namely:

prediction = original
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Such sum and difference operations, all four methods, are also applicable to 1-bit
data, namely when implementing ODelta versions of the encoder 10 and decoder 20.
In a situation of 1-bit data, the next values are already known by both the encoder 10
and the decoder 20, namely MIN = 0, MAX = 1. Moreover, it is beneficially assumed
that lowValue = MIN = 0, and highValue = MAX = 1. Furthermore, in such case, the
“number” is therefore [highValue — lowValue = 1 - 0 = 1], and maxValue is
beneficially chosen to be “number” + 1 =1 + 1 = 2. Beneficially, the prediction value
is chosen to be a value “0”, because there is only 1-bit data being considered that
can only have positive values starting from lowValue = MIN = 0. For 1-bit data,
method 1 and method 3 yield mutually similar coding results. Similarly, method 2 and
method 4 yield mutually similar coding results. Having such knowledge beneficially
simplifies the information which needs to be sent in the data D2, as various defaults
can be assumed, namely it is only necessary to send information about the number
of execution times of the difference operations, either method 1 or method 2, and the
selected prediction (input value (method 1) or result value (method 2)), so that the
decoder 20 can execute the correct inverse difference operation a requisite number

of times when decoding the data D2/D3 or D4 to generate the decoded data D5.

The first example that was created by using method 1 or method 3 that creates
similar output, can also be processed by using either method 2 or method 4, which
also create similar output. The result shown below can be achieved by those

methods when applied to the data Eq 1:

o11001000111100111111111111010101010 1

This time, the processed data has twenty four “1”’s and thirteen “0”’s, namely the
entropy would be the same as in the first example, but the counts of “1” and “0”
would change places. This does not always occur, instead often the entropy changes
as well between these different methods. For example, after the four first elements of
data, method 1 and/or method 3 would produce three “1”’s and one “0”, whereas in
the original data and the data that has been processed with method 2 and/or method

”

4 would have two “1”s and two “0”s. Therefore, method 1 and/or method 3 would
produce smaller entropy than method 2 and/or method 4, and also smaller entropy

than originally.
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In a multi-bit implementation, if the data D1 includes values in a range from 64 to
+63, then MIN = -64 and MAX = 63. By assuming lowValue = MIN and highValue =
MAX, the “number’ = 127 and maxValue is beneficially chosen to be 128. However,
when the data D1 varies at random, the “prediction” value is beneficially set to a
value [maxValue div 2 = 64]. It is to be noted that when the “prediction” value is out of
the range (from -64 to 63), it has to be converted so that it fits inside the range, and
so the “prediction” value actually is 64 — 128 = -64 that is inside the range. It is also
possible to select so that the prediction value is, for example, the calculated
“prediction” + lowValue = 64 + -64 = 0, because then it better represents the mid-

range value.

It is to be noted that, if the first value is for example -1, the first coded value with the
direct ODelta method 1, and/or method 2, would be -1 - 0 = -1, and correspondingly,
with the direct ODelta method 3, and/or method 4, -1 + 0 = -1. The next values would
then change according to how the data progresses, for example if the second value
would be 5, then the direct ODelta method 1 would produce 5 - -1 = 6, direct ODelta
method 2 would produce 5 - -1 = 6, direct ODelta method 3 would produce 5 + -1 = 4,
and direct ODelta method 4 would produce 5 + -1 = 4. The decoder 20 would in this
case be able to produce as the first value when using the inverse ODelta method 1,
and/or method 2, -1 + 0 = -1 and with the inverse ODelta method 3, and/or method 4,
-1 - 0 = -1. Correspondingly, the second value with the inverse ODelta method 1
would be 6 + -1 =5, with the inverse ODelta method 2 it would be 6 + -1 = 5, with the
inverse ODelta method 3 it would be 4 - -1 = 5 and with the inverse ODelta it would
be4--1=5.

This solution can then be optimized if the number range actually only contains values
between -20 and +27. In this example case, it is feasible to transmit, for example,
lowValue = -20 and highValue = 27. If both are transmitted, it is feasible to calculate
that number = 47 and maxValue is then chosen to be beneficially 48. Now, it is
feasible to calculate the value 24 or actually 24 + -20 = 4 for prediction. Then, the
previous example would yield for example for the value -1 when the ODelta method1,
or method 2, is used: -1 - 4 = -5 and with the ODelta method 3, or method 4, -1 + 4 =
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3. Similarly, the second value would be for ODelta methods as (5 --1) =6, (5 --5) =
10, (5 +-1) =4, and (5 + 3) = 8. The decoding 20 functions correctly again and yields
the first value for method 1, and/or method 2, as -5 + 4 = -1 and for method 3, and/or
method 4, as 3 — 4 = -1. Correspondingly, the second values for different methods
would be decoded as (6 +-1)=5,(10+-5)=5,(4--1)=5,and (8-3) = 5.

It is to be noted that all the values in these examples above are inside the range ,
namely from -64 to +63 or from -20 to +27, and so it is not necessary to perform the
correction term within these example values, but if any negative or positive change is
big enough , then the correction to the data values have to be made by the given

Equations 21 to 24 (Eq. 21 to Eq. 24) to keep the result values within the range.

When lowValue is known, coded values are beneficially arranged to start with O and
to end with a value “number”, for simplifying a coding table which must be sent from
the encoder 10 to the decoder 20 with the entropy encoded data D3. This operation
is called post-pedestal, and this post-pedestal value has to be deleted from the
coded data values after the entropy decoding and before the inverse ODelta

operation to data D4.

As mentioned earlier, it is also possible to implement the pedestal with the pre-
pedestal functionality, where the original input data (D1) is transformed into positive
elements which can contain values from zero to “number” already before the actual
execution of the ODelta method. Also in this situation, the information transmission
that this operation requires is beneficial to perform in such a way that the “pre-
pedestal” and Odelta method do not repeatedly transmit the same information, or
ignore what is already known thanks to some other method. This pre-pedestal effect
should be deleted from the decoded data after the inverse ODelta operation to create

proper D5 output data.

Modifications to embodiments of the invention described in the foregoing are possible

without departing from the scope of the invention as defined by the accompanying

” 113 ” (134 ” 13

claims. Expressions such as “including”, “comprising”, “incorporating”, “consisting

7 [{3 P

of’, “have”, “is” used to describe and claim the present invention are intended to be

construed in a non-exclusive manner, namely allowing for items, components or
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elements not explicitly described also to be present. Reference to the singular is also
to be construed to relate to the plural. Numerals included within parentheses in the
accompanying claims are intended to assist understanding of the claims and should

not be construed in any way to limit subject matter claimed by these claims.
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CLAIM SET (CLEAN VERSION)

1. An encoder (10) for encoding input data (D1) including a sequence of
numerical values to generate corresponding encoded output data (D2 or D3),
characterized in that the encoder (10) includes a data processing arrangement for
applying to the input data (D1) a form of differential and/or sum encoding to generate
one or more corresponding encoded sequences, wherein the one or more
corresponding encoded sequences are subjected to a wrap around a maximum value
and/or a wrap around a minimum value, for generating the encoded output data (D2
or D3).

2. An encoder (10) as claimed in claim 1, characterized in that the data
processing arrangement is operable to analyze the input data (D1) and/or the one or
more corresponding encoded sequences to compute one or more offset, minimum or
maximum values for applying to the one or more corresponding encoded sequences

for use in generating the encoded output data (D2 or D3).

3. An encoder (10) as claimed in claim 2, characterized in that the one or more

offset values have a value “0”.

4. An encoder (10) as claimed in claim 1, characterized in that the encoder (10)
is operable to process the numerical values including one or more 1-bit values, and

the encoder (10) is operable to encode the input data (D1) in a bit-by-bit manner.

5. An encoder (10) as claimed in claim 1, characterized in that the one or more
corresponding encoded sequences represent changes in sequential values of the
input data (D1).

6. An encoder (10) as claimed in claim 1, characterized in that the encoder (10)
is operable to subdivide the input data (D1) into a plurality of sections of data which

are separately encoded.
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7. An encoder (10) as claimed in claim 6, characterized in that the encoder (10)
is operable to apply encoding selectively to the sections of data only when data

compression is thereby achievable in the encoded output data (D2 or D3).

8. An encoder (10) as claimed in claim 1, characterized in that the encoder (10)
is operable to employ a default first prediction value for a series of prediction values

which are employed to create the output encoded data (D2 or D3).

9. An encoder (10) as claimed in claim 8, characterized in that the default first
prediction value is at least one of: “0", maxValue div 2, maxValue div 2 + lowValue,

highValue — lowValue.

10.  An encoder (10) as claimed in any one of the preceding claims, characterized
in that the encoder (10) is operable to apply additional encoding to generate the
encoded output data (D2), wherein the additional encoding includes at least one of:
run-length encoding (RLE), variable length coding (VLC), Huffman coding, arithmetic

coding, range coding.

11.  An encoder (10) as claimed in claim 6, characterized in that the encoder (10)
is operable to subdivide the input data (D1) into a plurality of sections depending
upon run-lengths of mutually similar bits therein which are efficient for encoding using
run-length encoding (RLE), Huffman coding, variable-length encoding (VLE), range

coding and/or arithmetic encoding.

12.  An encoder (10) as claimed in any one of the preceding claims, characterized
in that the processing arrangement is implementing using computing hardware
operable to execute one or more software products recorded on machine-readable
data-storage media.

13. A method of using an encoder (10) for encoding input data (D1) including a
sequence of numerical values to generate corresponding encoded output data (D2 or
D3), characterized in that the method includes:

(a) applying to the input data (D1) a form of differential and/or sum encoding to

generate one or more corresponding encoded sequences, wherein
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(b) the one or more corresponding encoded sequences are subjected to a wrap
around a maximum value and/or a wrap around a minimum value, for

generating the encoded output data (D2 or D3).

14. A method as claimed in claim 13, characterized in that the method includes
using the data processing arrangement to analyze the input data (D1) and/or the one
or more corresponding encoded sequences to compute one or more offset, minimum
or maximum values for applying to the one or more corresponding encoded

sequences for use in generating the encoded output data (D2 or D3).

15. A method as claimed in claim 14, characterized in that the method includes

using for the one or more offset values a value “0”.

16. A method as claimed in claim 14, characterized in that the method includes
processing the numerical values including one or more 1-bit values, and the encoder

(10) is operable to encode the input data (D1) in a bit-by-bit manner.

17. A method as claimed in claim 13, characterized in that the one or more
corresponding encoded sequences represent changes in sequential values of the
input data (D1).

18. A method as claimed in claim 13, characterized in that the method includes
using the data processing arrangement to subdivide the input data (D1) into a

plurality of sections of data which are then separately encoded.

19. A method as claimed in claim 18, characterized in that the method includes
applying the form of encoding selectively to the sections of data only when data
compression is thereby achievable in the encoded output data (D2 or D3).

20. A method as claimed in claim 13, characterized in that the method includes
employing a default first prediction value for a series of prediction values which are

employed to create the output encoded data (D2 or D3).
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21. A method as claimed in claim 20, characterized in that the default first
prediction value is at least one of: “0”, maxValue div 2, maxValue div 2 + lowValue,

highValue — lowValue.

22. A method as claimed in any one of claims 13 to 21, characterized in that the
method includes applying additional encoding therein to generate the encoded output
data (D2 or D3), wherein the additional encoding includes at least one of. run-length
encoding (RLE), variable length coding (VLC), Huffman coding, arithmetic coding,

range coding.

23. A method as claimed in any one of claims 13 to 22, characterized in that the
method includes implementing the processing arrangement using computing
hardware operable to execute one or more software products recorded on machine-

readable data-storage media.

24. A decoder (20) for decoding encoded data (D2 or D3) to generate
corresponding decoded output data (D5), characterized in that the decoder (20)
includes a data processing arrangement for processing one or more portions of

the encoded data (D2 or D3), wherein the data processing arrangement is operable
to apply a form of differential and/or sum decoding to one or more corresponding
encoded sequences of the one or more portions, wherein the one or more encoded
sequences are subjected to a wrap around a maximum value and/or a wrap around a

minimum value, for generating the decoded output data (D5).

25. A decoder (20) as claimed in claim 24, characterized in that the decoder (20)
is operable to decode the encoded data (D2 or D3) including one or more 1-bit
values, and the decoder (20) is operable to decode the encoded data (D2 or D3) in a

bit-by-bit manner.

26. A decoder (20) as claimed in claim 24, characterized in that the data
processing arrangement is operable to compute one or more offset, minimum or
maximum values for applying to the one or more encoded sequences for use in

generating the decoded output data (D5).
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27, A decoder (20) as claimed in claim 26, characterized in that the one or more

offset values have a value “0”.

28. A decoder (20) as claimed in claim 24, characterized in that the one or more
corresponding encoded sequences represent changes in sequential values encoded
into the encoded data (D2 or D3).

29. A decoder (20) as claimed in claim 24, characterized in that the data
processing arrangement is operable to apply to data being processed therethrough
an inverse of at least one of. run-length encoding (RLE), variable-length coding

(VLC), Huffman coding, arithmetic coding, range coding.

30. A decoder (20) as claimed in claim 24, characterized in that the data
processing arrangement is operable to assume a default value of first prediction

value in a series of data being decoded therethrough.

31. A decoder (20) as claimed in claim 30, characterized in that the default value

has a value “0”.

32. A decoder (20) as claimed in any one of claims 24 to 31, characterized in that
the processing arrangement is implementing using computing hardware operable to
execute one or more software products recorded on machine-readable data-storage

media.

33. A method of using a decoder (20) for decoding encoded data (D2 or D3) to

generate corresponding decoded output data (D5), characterized in that the method

includes:

(a) using a data processing arrangement for processing one or more portions of
the encoded data (D2 or D3), wherein

(b) the data processing arrangement is operable to apply a form of differential
and/or sum decoding to one or more corresponding encoded sequences of the
one or more portions, wherein the one or more encoded sequences are
subjected to a wrap around a maximum value and/or a wrap around a

minimum value, for generating the decoded output data (D5).
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34. A method as claimed in claim 33, characterized in that the method includes
operating the decoder (20) to decode the encoded data (D2 or D3) including one or
more 1-bit values, and the decoder (20) is operable to decode the encoded data (D2

or D3) in a bit-by-bit manner.

35. A method as claimed in claim 33, characterized in that the method includes
operating the data processing arrangement to compute one or more offset, minimum
or maximum values for applying to the one or more encoded sequences for use in

generating the decoded output data (D5).

36. A method as claimed in claim 35, characterized in that the one or more offset

values have a value “0”.

37. A method as claimed in claim 33, characterized in that the one or more
corresponding encoded sequences represent changes in sequential values encoded
into the encoded data (D2 or D3).

38. A method as claimed in claim 33, characterized in that the method includes
using the data processing arrangement to apply to data being processed
therethrough an inverse of at least one of: run-length encoding (RLE), variable-length

coding (VLC), Huffman coding, arithmetic coding, range coding.

39. A method as claimed in claim 33, characterized in that the method includes
operating the data processing arrangement to assume a default value of first

prediction value in a series of data being decoded therethrough.

40. A method as claimed in claim 39, characterized in that the default value has a

value “0".

41. A method as claimed in any one of claims 33 to 40, characterized in that the
method includes implementing the processing arrangement using computing
hardware operable to execute one or more software products recorded on machine-

readable data-storage media.
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42. A codec (30) including at least one encoder (10) as claimed in claim 1 for
encoding input data (D1) to generate corresponding encoded data (D2), and at least
one decoder (20) as claimed in claim 24 for decoding the encoded (D2 or D3) to

generate corresponding decoded data (D5).

43. A software product recorded on machine-readable data storage media,
characterized in that the software product is executable upon computing hardware for

executing a method of encoding data as claimed in any one of claims 13 to 23.

44, A software product recorded on machine-readable data storage media,
characterized in that the software product is executable upon computing hardware for

executing a method of decoding data as claimed in any one of claims 33 to 41.
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