»UKPatent .,GB .,2527588 B

(45)Date of B Publication 18.05.2016
(54) Title of the Invention: ENcoder and decoder
(51) INT CL: HO3M 7/30 (2006.01) GO6F 3/06 (2006.01) GO6F 17/30 (2006.01) HO4L 29/06 (2006.01)
HO4N 19/00 (2014.01)
(21) Application No: 1411451.6 (72) Inventor(s):
Tuomas Mikael Karkkdinen
(22) Date of Filing: 27.06.2014 Ossi Kalevo
(43) Date of A Publication 30.12.2015 (73) Proprietor(s):

Gurulogic Microsystems Oy
Linnankatu 34, Turku 20100, Finland

(56) Documents Cited: (74) Agent and/or Address for Service:
EP 2359233 A1 EP 2256934 A1 Basck Ltd
US 7643505 B1 US 5434568 A 16 Saxon Road, CAMBRIDGE, Cambridgeshire,
US 20130315307 At US 20100115137 A1 CB5 8HS, United Kingdom

(58) Field of Search:
As for published application 2527588 A viz:
INT CL GO6F, GO6T, HO3M, H04L, HO4N
Other: WPI, EPODOC, INSPEC, TXTE
updated as appropriate

g 889/.¢9¢ 99

1/8

ENCODER

04 ——N 102

1SS

7

108

—
N
N

j!
] DECODER |r— N
112 NV

100

Fig. 1

AN

2/8

ENCODER
>ﬁ

E2

N\ Z

N

DECODER
112

AN

Fig. 2

3/8

IDENTIFY REOCCURRENCES OF
DATA BLOCKS AND/OR DATA PACKETS
302

IDENTIFY UNCHANGED AND/OR
CHANGED ELEMENTS WITHIN
DATA BLOCKS AND/OR DATA PACKETS
304

ENCODE UNCHANGED AND CHANGED
ELEMENTS FOR DATA STREAM OR
DATA STREAMS
306

ENTROPY-ENCODE DATA STREAM OR
DATA STREAMS
308

Fig. 3

4/8

(START >

i
T

READ DATA BLOCK AND/OR PACKET
AND READ REFERENCE BLOCK
AND/OR PACKET

402

A

READ DATA ELEMENT FROM DATA BLOCK
AND/OR PACKET AND READ REFERENCE
ELEMENT FROM REFERENCE BLOCK

AND/OR PACKET

404

A

4

DATA VALUE IS CHANGED?
| data — reference | > Threshold

WRITE PREDEFINED SYMBOL
TO ENCODED DATA (OR SET

UNCHANGED BIT TO
ANOTHER STREAM)
408

Fig. 4A

YES

A 4

WRITE VALUE OF DATA ELEMENT
TO ENCODED DATA (AND
OPTIONALLY SET CHANGED BIT
TO ANOTHER STREAM)

410

5/8

NEXT
DATABLOCK AND/OR
DATA PACKET EXISTS?
414

Fig. 4B

6/8

OR DATA STREAMS

,.
E ENTROPY-DECODE DATA STREAM
: 502

IDENTIFY UNCHANGED AND/OR CHANGED
ELEMENTS WITHIN DATA BLOCKS AND/OR
DATA PACKETS
504

DECODE UNCHANGED AND CHANGED
ELEMENTS IN DATA STREAM OR
DATA STREAMS
506

ASSEMBLE DATA BLOCK AND/OR

DATA PACKET TO DECODED DATA .
508 ;

Fig. 5

7/8

(START >

i
<

RECEIVE DATA STREAM (AND OPTIONALLY
UNCHANGED/CHANGED BIT STREAM) FOR
DATA BLOCK AND/OR DATA PACKET AND READ
REFERENCE BLOCK AND/OR PACKET

602

4

READ DATA ELEMENT FROM DATA STREAM (OR
READ UNCHANGED/CHANGED BIT FROM BIT
STREAM) AND READ REFERENCE ELEMENT
FROM REFERENCE BLOCK AND/OR PACKET

604

YES

DATA ELEMENT IS
PREDEFINED SYMBOL (OR BIT IS
UNCHANGED)?

606

WRITE VALUE OF REFERENCE
ELEMENT TO DECODED DATA
608

Fig. 6A

NO

A 4

(READ DATA ELEMENT FROM
DATA STREAM AND)
WRITE VALUE OF DATA
ELEMENT TO DECODED DATA
610

8/8

NEXT
DATA BLOCK AND/OR
DATA PACKET EXISTS?
614

Fig. 6B

Intellectual
Property
Office

Application No. GB1411451.6 RTM Date :19 December 2014

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

WIMAX

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

10

18 01 16

25

30

ENCODER AND DECODER

TECHNICAL FIELD

The present disclosure relates generally to data compression, and more specifically,
to encoders for encoding input data (D1) to generate corresponding encoded data
(E2), and decoders for decoding the encoded data (E2) to generate corresponding
decoded data (D3). Moreover, the present disclosure relates to methods of encoding
input data (D1) to generate corresponding encoded data (E2), and methods of
decoding the encoded data (E2) to generate corresponding decoded data (D3).
Furthermore, the present disclosure also relates to computer program products
comprising non-transitory (namely non-transient) computer-readable storage media
having computer-readable instructions stored thereon, the computer-readable
instructions being executable by a computerized device comprising processing

hardware to execute the aforesaid methods.

BACKGROUND

Today, it has become a customary practice to compress data to reduce usage of
resources, for example, during data storage and data communication. During data
communication, a sequence of data blocks or packets is communicated from one
device to another device. Data blocks or packets communicated later in the
sequence are often changed in comparison to data blocks or packets that have been
communicated earlier. However, changes in individual elements inside these
changed data blocks or packets are considerably smaller than the original content of
the data blocks or packets. In other words, most of the elements inside the changed
blocks are unchanged in comparison to the earlier data blocks or packets. When
such a sequence of data blocks or packets is compressed using conventional

encoders, often only a small compression ratio is achieved.

One conventional encoder-decoder (hereinafter referred to as “codec”) has been
described in US patent document 20120219065 A1, titled “Processing of Image”. The
conventional codec processes entire data blocks of an image or data sequence, and
compares the entire data blocks with previous data blocks. The conventional codec

encodes an unchanged data block to a predefined colour value or data value, and

10

N
(&)

1801 16

N
o

25

30

also encodes a changed data block as it is. This means that all the original data
values in a changed data block are coded, and so a compression efficiency
performance provided by the conventional encoder-decoder is not as great as

potentially achievable.

Moreover, another conventional codec (hiip:fenwikipsdia.org/wikiiDella sancoding)

employs delta coding for processing data. In delta coding, a difference (namely, a
delta value) between a current data element and a previous data element is written or
transmitted. However, such delta values often generate new data values that are
potentially not present in the data or otherwise enlarges the dynamic of the data

values, and therefore, an increase entropy of the data thereby potentially arises.

Therefore, there exists a need for such a codec for compressing data that is more

efficient in comparison to the conventional codecs.

In a published US patent application US 2013/0315307 A1 (“Processing and
Reproduction of Frames”; Inventors: Tuomas Karkkainen, Ossi Kalevo; Applicant:
Gurulogic Microsystems Oy), there is described a processor that is configured to
receive input data, divide an individual frame into blocks, compare the blocks with
corresponding blocks of a first prediction frame and identify changed blocks. The
processor is also configured to include in generated intermediate data the identified
changed blocks, and generate a change indicator indicating the positions in the

individual frame of the identified changed blocks and identified unchanged blocks.

In a granted US patent US 5434568 A (“Data Compression by Removing Repetition
and Unnecessary Information”; Inventor: Edward W. Moll; Applicant: Edward W.
Moll), there is described a system in which repetitive data and non-repetitive data,
including periods of no information, is encoded prior to transmission or storage in
digital form. Repetition, partial repetition, and near repetition is encoded in a form that
indicates the occurrence of repetition, its characteristics and its duration. The
existence and size of repeated patterns in the data is dynamically determined. When
repetition is detected, non-repetitive data is inserted into the data stream and
repetitive data is removed from the data stream. To this non-repetitive data in the
data stream are added a coded repeated pattern sample, an identification preamble

signal, an instruction signal for decoding purposes, a period count signal, a mask

10

18 01 16

N
o

25

30

signal, and a repeat count signal. All necessary data elements are combined and
assembled to produce compressed data. A receiver utilizes these coded and

uncoded data elements to regenerate complete original data.

In a granted US patent US 7643505 B1 (“Method and System for Real Time
Compression and Decompression”; Inventor: lan G. Colloff, Applicant: Qlogic
Corporation), there are described a method and a system for compressing a data
packet. The method includes receiving a data packet, comparing the data packet with
content stored in a history module, generating a plurality of masks based on the
comparisons, comparing the plurality of masks, selecting one of the plurality of masks
based upon the mask comparisons, and generating a compression record, wherein
the compression record includes size of a data packet, an address field, a mask field
and data, and a data packet header includes a control bit indicating whether or not

the data packet is compressed.

In a published EP patent application EP 2359233 A1 (“Delta Compression after
Identity Deduplication”; Inventors: Mark Huang, Edward K Lee, Kai Li, Philip Shilane,
Grant Wallace, Ming Benjamin Zhu; Applicant: Data Domain, Inc.), there are
described a method and a system for processing data. The system includes a
deduplicating system for determining that a first data segment is identical to a first
previous data segment. The system also includes a delta compression system for
determining that a second data segment, which is not identical to a second previous

data segment, is similar to a third previous data segment.

In a published US patent application US 2010/0115137 A1 (“Data Compression
Method and Data Communication System Utilizing the Same”;, Inventors: Byeong
Deok Kim, Sung Jo OH; Applicant: Samsung Electronics Co., Ltd.), there are
described a data compression method and a data communication system utilizing the
aforesaid method. The system includes a sender apparatus that compares input data
with a previously sent data in storage, and produces, when a data item repeated in
the input data and the previously sent data is found, delta data by excluding the
repeated data item from the input data. The sender apparatus represents the delta
data in a transport format, and transmits the delta data. The system also includes a

receiver apparatus that receives data in the transport format, and adds, when delta

10

15

1801 16

20

25

data is present in the received data, a repeated data item to the delta data, and

recovers the original data.

In a published EP patent application EP 2256934 A1 (“Method and Apparatus for
Content-aware and Adaptive Deduplication”; Inventors: David G. Therrien, David
Andrew Thompson; Applicant: Exagrid Systems, Inc.), there are described a method
and a system for transmission of data across a network. In the method, a received
data stream is analysed to determine a starting location and an ending location of
each zone within the received data stream, and a zone stamp identifying that zone is
generated. The zone stamp Iincludes a sequence of contiguous characters
representing at least a portion of data in the zone, wherein the order of characters in
the zone stamp corresponds to the order of data in the zone. Moreover, in the
method, a zone stamp of a given zone is compared with another zone stamp of
another zone in any received data stream to determine whether or not the given zone
is substantially similar to another zone. Subsequently, the method includes delta-
compressing zones within any received data stream that have been determined to
have substantially similar zone stamps, thereby deduplicating zones having
substantially similar zone stamps within any received data stream, and transmitting
the deduplicated zones across the network from one storage location to another

storage location.

SUMMARY

The present disclosure seeks to provide an improved encoder for encoding input data

(D1) to generate corresponding encoded data (E2).

The present disclosure also seeks to provide an improved decoder for decoding

encoded data (E2) to generate corresponding decoded data (D3).

Moreover, the present disclosure seeks to provide an improved method of encoding

input data (D1) to generate corresponding encoded data (E2).

Moreover, the present disclosure also seeks to provide an improved method of

decoding encoded data (E2) to generate corresponding decoded data (D3).

1801 16

10

—_
o

N
o

25

30

In a first aspect, embodiments of the present disclosure provide an encoder including
processing hardware for encoding input data (D1) to generate corresponding
encoded data (E2), wherein the processing hardware is operable to process the input

data (D1) as data blocks and/or data packets, characterized in that

the processing hardware is operable to:

() identify substantial reoccurrences of data blocks and/or data packets within at
least a portion of the input data (D1), wherein the data blocks and/or data
packets include a corresponding plurality of elements, wherein the elements
include a plurality of bits;

(i) identify where elements are unchanged within the substantially reoccurring
data blocks and/or data packets, and/or where elements are changed within
the substantially reoccurring data blocks and/or data packets;

(i) encode unchanged elements in the encoded data (E2) by employing at least
one corresponding symbol or at least one corresponding bit indicating an
absence of change in the unchanged elements relative to corresponding
elements in a reference data block and/or data packet; and

(iv) encode changed elements in the encoded data (E2).

Optionally, the input data (D1) is in a form of at least one of: text data, image data,
video data, audio data, binary data, sensor data, measurement data, graphical data,

multi-dimensional data and/or one-dimensional data, but not limited thereto.

Optionally, a reference data block and/or a reference data packet is a previous data
block or data packet, a data block or a packet in a similar location in a previous
frame, a view or a channel;, a data block or a data packet described by a motion
vector (namely motion compensation); a data block or a data packet described by
symbol (namely deduplication); a data block or a data packet encoded with some
coding method (for example using coding methods such as DC encoding, multilevel
encoding, slide encoding, line encoding, discrete cosine transform (DCT) encoding,
database encoding, vector quantization encoding, palette encoding, interpolation
encoding, extrapolation encoding). Optionally, the at least one corresponding symbol
is represented by a predetermined data value. Optionally, the predetermined data
value is implemented as a zero data value. Optionally, the unchanged value, for

example when the value of the bit is 0, and the changed value, for example when the

10

N
(&)

1801 16

25

30

value of the bit is 1, are described by bits in a separate data stream, and only the

changed input data values are encoded into the data stream.

Moreover, optionally, the processing hardware is operable to encode at least a
portion of the changed elements in a quantized manner in the encoded data (E2).
Such a quantized manner of operation is capable of providing an enhanced degree of

data compression.

When all the elements in a given data block or data packet are unchanged as
compared to a reference data block or data packet, then, optionally, the data block or
packet is set as unchanged and then there is no need to deliver any other information
for that data block or data packet. Optionally, the data blocks and data packets with
all values changed are also separated from partially changed data blocks or data

packets.

The method described in this disclosure is beneficially used for encoding the partially
changed data blocks or packets. Partially changed data blocks or packets contain
both changed and unchanged data values. Optionally, the method is also operable to
encode changed data blocks or packets. Optionally, the method is also operable to

encode unchanged data blocks or packets.

Moreover, optionally, the processing hardware is operable to apply a compression
algorithm, for example Range coding, SRLE (split run length encoding), Delta coding,
ODelta coding, EM (entropy modifying encoding), Arithmetic coding, Huffman coding,
but not limited thereto, to compress the encoded data (E2) to generate compressed
data (C4) which is included into the encoded output data (E2). Such additional
compression provided by the compression algorithm is capable of further

compressing the encoded data (E2) relative to the input data (D1).

In a second aspect, embodiments of the present disclosure provide a decoder
including processing hardware for decoding encoded data (E2) to generate
corresponding decoded data (D3), wherein the processing hardware is operable to
process the encoded data (E2) as data blocks and/or data packets, characterized in
that

the processing hardware is operable to:

1801 16

10

15

25

30

() decode the encoded data (E2) to generate data for changed elements, the
changed elements being elements that are changed within substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2);

(i) decode the encoded data (E2) to generate data for unchanged elements, the
unchanged elements being elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2), wherein the unchanged elements are represented by at least one
corresponding symbol or at least one corresponding bit indicating an absence
of change in the unchanged elements relative to corresponding elements in a
reference data block and/or data packet; and

(i) assemble the data generated for the changed and unchanged elements in (i)
and (ii) into data blocks and/or data packets to generate the decoded data
(D3), wherein the data blocks and/or data packets include a corresponding

plurality of elements, wherein the elements include a plurality of bits.

Optionally, the processing hardware is operable to decode at least a portion of the

changed elements in a quantized manner in the decoded data (D3).

Optionally, the processing hardware is operable to apply a decompression algorithm
to decompress compressed data (C4) to generate the encoded data (E2) for
decoding the encoded data (E2) to generate the data for the changed and

unchanged elements.

Optionally, the decoded data (D3) is in a form of at least one of: text data, image
data, video data, audio data, binary data, sensor data, measurement data, graphical

data, multi-dimensional data and/or one-dimensional data, but not limited thereto.

In a third aspect, embodiments of the present disclosure provide a codec including
the aforementioned encoder and the aforementioned decoder. Optionally, the codec
is in a form of at least one of: a video codec, an audio codec, an image codec and/or

a data codec, but not limited thereto.

Moreover, optionally, the encoder and the decoder are operable to implement

chunked transfer encoding for Hypertext Transfer Protocol (HTTP) and/or Real-Time

10

O15

18 01 1

20

25

30

Messaging Protocol (RTMP). Optionally, the HTTP and/or RTMP employ fixed-size

data blocks and/or data packets inside requests and responses to the requests.

In a fourth aspect, embodiments of the present disclosure provide a method of
encoding input data (D1) to generate corresponding encoded data (E2), wherein the
method includes processing the input data (D1) as data blocks and/or data packets,

characterized in that

the method includes:

() identifying substantial reoccurrences of data blocks and/or data packets within
at least a portion of the input data (D1), wherein the data blocks and/or data
packets include a corresponding plurality of elements, wherein the elements
include a plurality of bits;

(i) identifying where elements are unchanged within the substantially reoccurring
data blocks and/or data packets, and/or where elements are changed within
the substantially reoccurring data blocks and/or data packets;

(i) encoding unchanged elements in the encoded data (E2) by employing at least
one corresponding symbol or at least one corresponding bit indicating an
absence of change in the unchanged elements relative to corresponding
elements in a reference data block and/or data packet; and

(iv) encoding changed elements in the encoded data (E2).

In a fifth aspect, embodiments of the present disclosure provide a computer program
product comprising a non-transitory (namely non-transient) computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute the aforementioned method.

In a sixth aspect, embodiments of the present disclosure provide a method of
decoding encoded data (E2) to generate corresponding decoded data (D3), wherein
the method includes processing the encoded data (E2) as data blocks and/or data

packets, characterized in that

the method includes:

1801 16

10

—_
o

N
o

25

() decoding the encoded data (E2) to generate data for changed elements, the
changed elements being elements that are changed within substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2);

(i) decoding the encoded data (E2) to generate data for unchanged elements, the
unchanged elements being elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2), wherein the unchanged elements are represented by at least one
corresponding symbol or at least one corresponding bit indicating an absence
of change in the unchanged elements relative to corresponding elements in a
reference data block and/or data packet; and

(i) assembling the data generated for the changed and unchanged elements in
steps (i) and (ii) into data blocks and/or data packets to generate the decoded
data (D3), wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the elements include a plurality of
bits.

In a seventh aspect, embodiments of the present disclosure provide a computer
program product comprising a non-transitory (namely non-transient) computer-
readable storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute the aforementioned method.

Embodiments of the present disclosure substantially eliminate, or at least partially
address, the aforementioned problems in the prior art, and enable lossless or near-
lossless data compression of one-dimensional image data or multi-dimensional
image data, video data, audio data and any other type of data with a high

compression ratio.

Additional aspects, advantages, features and objects of the present disclosure are
made apparent in the drawings and the detailed description of the illustrative

embodiments construed in conjunction with the appended claims that follow.

10

—_
W

1801 16

25

30

-10 -

It will be appreciated that features of the present disclosure are susceptible to being
combined in various combinations without departing from the scope of the present

disclosure as defined by the appended claims.

DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed description of illustrative
embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of Iillustrating the present disclosure, exemplary
constructions of the disclosure are shown in the drawings. However, the present
disclosure is not limited to specific methods and apparatus disclosed herein.
Moreover, those in the art will understand that the drawings are not to scale.

Wherever possible, like elements have been indicated by identical numbers.

Embodiments of the present disclosure will now be described, by way of example

only, with reference to the following diagrams wherein:

Fig. 1 is a schematic illustration of an example network environment that is suitable
for practicing embodiments of the present disclosure;

Fig. 2 is an illustration of an example data flow, in accordance with an embodiment of
the present disclosure;

Fig. 3 is an illustration of steps of a method of encoding input data (D1) to generate
corresponding encoded data (E2), in accordance with an embodiment
of the present disclosure;

Figs. 4A and 4B collectively are an illustration of steps of an encoding processing, in
accordance with an embodiment of the present disclosure;

Fig. 5 is an illustration of steps of a method of decoding the encoded data (E2) to
generate corresponding decoded data (D3), in accordance with an
embodiment of the present disclosure; and

Figs. 6A and 6B collectively are an illustration of steps of a decoding processing, In

accordance with an embodiment of the present disclosure.

In the accompanying drawings, an underlined number is employed to represent an
item over which the underlined number is positioned or an item to which the

underlined number is adjacent. A non-underlined number relates to an item identified

10

—_
o

1801 .16

25

30

-11 -

by a line linking the non-underlined number to the item. When a number is non-
underlined and accompanied by an associated arrow, the non-underlined number is

used to identify a general item at which the arrow is pointing.

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description illustrates embodiments of the present disclosure
and ways in which they can be implemented. Although the best mode of carrying out
the present disclosure has been disclosed, those skilled in the art would recognize
that other embodiments for carrying out or practicing the present disclosure are also

possible.

Embodiments of the present disclosure provide an encoder including processing
hardware for encoding input data (D1) to generate corresponding encoded data (E2).
The processing hardware is operable to process the input data (D1) as data blocks
and/or data packets. Optionally, the input data (D1) is in a form of at least one of: text
data, image data, video data, audio data, binary data, sensor data, measurement
data, graphical data, multi-dimensional data and/or one-dimensional data, but not

limited thereto.

The processing hardware is operable to identify substantial reoccurrences of data
blocks and/or data packets within the input data (D1). The processing hardware is
then operable to identify where elements are unchanged within the substantially
reoccurring data blocks and/or data packets, and/or where elements are changed

within the substantially reoccurring data blocks and/or data packets.

Subsequently, the processing hardware is operable to encode unchanged elements
in the encoded data (E2) by employing at least one corresponding symbol, or at least
one corresponding bit, for example a single bit, indicating an absence of change in
the unchanged elements relative to corresponding elements in a reference data block
and/or data packet. Optionally, the at least one corresponding symbol is represented
by a predetermined data value. Optionally, the predetermined data value is
implemented as a zero data value. Optionally, the unchanged value, for example
when the bit value is 0, and the changed value, for example when the bit value is 1,
are described by bits in a separate bit stream and only the changed input data values

are encoded to the data stream. By “channel’ is meant at least one of: a channel-

10

—_
o

1801 16

25

30

-12 -

defined portion of the encoded data (E2), a channel-defined separate stream of data,

a channel defined separate data file.

Moreover, the processing hardware is operable to encode changed elements in the
encoded data (E2). Optionally, the processing hardware is operable to encode at
least a portion of the changed elements in a quantized manner in the encoded data
(E2).

Moreover, optionally, the processing hardware is operable to apply a compression
algorithm, for example Range coding, SRLE, Delta coding, ODelta coding, EM
(entropy modifying) coding, Arithmetic coding, Huffman coding, but not limited
thereto, to compress the encoded data (E2) to generate compressed data (C4) which

is included into the encoded output data (E2).

Furthermore, embodiments of the present disclosure also provide a decoder
including processing hardware for decoding encoded data (E2) to generate
corresponding decoded data (D3). The processing hardware is operable to process

the encoded data (E2) as data blocks and/or data packets.

The processing hardware is operable to decode the encoded data (E2) to generate
data for elements that are changed (hereinafter referred to as “changed elements”)
within substantial reoccurrences of data blocks and/or data packets within the
encoded data (E2). Optionally, the processing hardware is operable to decode at
least a portion of the changed elements in a quantized manner in the decoded data
(D3). By “quantized manner’ is meant that the changed elements are decoded into
data, wherein the decoded data is selected from a finite number of possible values

for the data, namely the decoded data changes in a non-continuous manner.

The processing hardware is operable to decode the encoded data (E2) to generate
data for elements that are unchanged (hereinafter referred to as “unchanged
elements”) within the substantial reoccurrences of data blocks and/or data packets
within the encoded data (E2). In the encoded data (E2), the unchanged elements are
represented by at least one corresponding symbol, or at least one corresponding bit,
for example a single bit, indicating an absence of change in the unchanged elements

relative to corresponding elements in a reference data block and/or data packet.

10

—_
o

1801 16

25

30

-13 -

Optionally, the processing hardware is operable to apply a decompression algorithm
to decompress compressed data (C4) present in the encoded data (E2) for use in
decoding the encoded data (E2) to generate the data for the changed and

unchanged elements.

Moreover, the processing hardware is operable to assemble the data generated for
the changed and unchanged elements into data blocks and/or data packets to
generate the decoded data (D3).

Optionally, the decoded data (D3) is in a form of at least one of: text data, image
data, video data, audio data, binary data, sensor data, measurement data, graphical

data, multi-dimensional data and/or one-dimensional data, but not limited thereto.

Furthermore, embodiments of the present disclosure also provide a codec including
the aforementioned encoder and the aforementioned decoder. Optionally, the codec
is in a form of at least one of: a video codec, an audio codec, an image codec and/or

a data codec, but not limited thereto.

Moreover, optionally, the encoder and the decoder are operable to implement
chunked transfer encoding for Hypertext Transfer Protocol (HTTP) and/or Real-Time
Messaging Protocol (RTMP). Optionally, the HTTP and/or RTMP employ fixed-size

data blocks and/or data packets inside requests and responses to the requests.

Referring now to the drawings, particularly by their reference numbers, Fig. 1 is a
schematic illustration of an example network environment 100 that is suitable for
practicing embodiments of the present disclosure. The network environment 100
includes an encoder 102 and one or more electronic devices, depicted as an
electronic device 104 in Fig. 1. The network environment 100 also includes a
communication network 106, and one or more data servers and/or data storages and
one or more databases, depicted as a data server and/or data storage 108 and a
database 110 in Fig. 1. Additionally, the network environment 100 includes a decoder
112 and one or more computerized devices, depicted as a computerized device 114
in Fig. 1. Optionally, the network environment 100 includes one or more databases
and/or one or more local data memories (116, 118) which are spatially local to

devices of the network environment 100.

10

15

1801 16

20

25

30

-14 -

The network environment 100 is optionally implemented in various ways, depending
on various possible scenarios. In one example scenario, the network environment
100 is optionally implemented by way of a spatially collocated arrangement of the
data server and/or data storage 108 and the database 110 coupled mutually in
communication via a direct connection, for example, as shown in Fig. 1. In another
example scenario, the network environment 100 is optionally implemented by way of
a spatially distributed arrangement of the data server and/or data storage 108 and
the database 110 coupled mutually in communication via a communication network,
such as the communication network 106. In yet another example scenario, the data
server and/or data storage 108 and the database 110 are optionally implemented via
cloud computing services. Optionally, the network environment 100 is implemented

in a distributed peer-to-peer (P2P) manner.

The data server and/or data storage 108 is coupled in communication with the
encoder 102 and the decoder 112, via the communication network 106 or via a direct
connection . Moreover, the encoder 102 is coupled in communication with the

decoder 112, via the communication network 106 or via a direct connection.

The communication network 106 is optionally a collection of individual networks,
interconnected with each other and functioning as a single large network. Such
individual networks are optionally wired, wireless, or a combination thereof. Examples
of such individual networks include, but are not limited to, Local Area Networks
(LANs), Wide Area Networks (WANs), Metropolitan Area Networks (MANs), Wireless
LANs (WLANSs), Wireless WANs (WWANSs), Wireless MANs (WMANSs), the Internet,
second generation (2G) telecommunication networks, third generation (3G)
telecommunication networks, fourth generation (4G) telecommunication networks,

and Worldwide Interoperability for Microwave Access (WIMAX) networks.

The electronic device 104 provides the encoder 102, either directly or through
communication network 106, which has input data (D1) as an input thereto.
Optionally, the input data (D1) is in a form of at least one of: text data, image data,
video data, audio data, binary data, sensor data, measurement data, graphical data,
multi-dimensional data and/or one-dimensional data, but not limited thereto. The

input data (D1) is optionally modified data, a part of an entire data sequence, or a

10

18 01 16

N
o

25

30

-15 -

combination of various types of data. Optionally, the input data (D1) is received as a

stream or as afile.

The encoder 102 includes processing hardware that is operable to execute
computer-readable instructions stored on a non-transitory (namely non-transient)
computer-readable storage medium for encoding the input data (D1) to generate
corresponding encoded data (E2). Alternatively, or additionally, the processing
hardware is hardwired, for example implemented by way of an application-specific

integrated circuit (ASIC), a state-variable machine or similar.

Optionally, the encoder 102 is implemented as a part of the electronic device 104. In
this case, the processing hardware of the encoder 102 is included in the electronic
device 104. In an example, the electronic device 104 is an image and/or video
capturing device that generates in operation large quantities of image and/or video
data, wherein a lossless compression is desired so as to preserve fine information in
the image and/or video data, whilst rendering the quantities of the image and/or video
data manageable for data storage purposes. Examples of such image and/or video
capturing devices include, but are not limited to, surveillance cameras, video
recorders, X-ray devices, Magnetic Resonance Imaging (MRI) scanners, and
ultrasound scanners. The electric device 104 is beneficially implemented using
Reduced Instruction Set Computing (RISC) processors that are capable of
performing data manipulations associated with methods of the present disclosure in a

highly efficient manner, while simultaneously being very energy efficient.

Alternatively, optionally, the encoder 102 is implemented independently, for example,
using a computerized device that includes the processing hardware of the encoder
102.

Upon receiving the input data (D1), the processing hardware of the encoder 102 is
operable to process the input data (D1) as data blocks and/or data packets.
Optionally, these data blocks and/or data packets have a fixed size. Alternatively, the
data blocks and/or data packets have a variable size; optionally, the variable size is
determined as a function of content and/or format of the input data (D1). Optionally,
the content is automatically analyzed by employing a combination of spatial Fourier

analysis and temporal Fourier analysis for computing one or more parameters for

10

18 01 16

N
o

25

30

-16 -

determining the variable size of the data blocks and/or data packets. Fourier
transforms, for example Fast Fourier Transform (FFT), are known to a person skilled
in the art, and are optionally implemented in a recursive manner, for example using

one or more RISC processors.

The processing hardware of the encoder 102 is operable to identify substantial
reoccurrences of data blocks and/or data packets within the input data (D1), namely,
substantially similar data blocks and/or data packets within the input data (D1). The
processing hardware of the encoder 102 is then operable to identify where elements
are unchanged within the substantially reoccurring data blocks and/or data packets,
and/or where elements are changed within the substantially reoccurring data blocks

and/or data packets.

Subsequently, the processing hardware of the encoder 102 is operable to encode, in
the encoded data (E2), unchanged elements within each data block and/or data
packet by employing at least one corresponding symbol or one or more
corresponding bits, for example a single bit, indicating an absence of change in the
unchanged elements within that data block and/or data packet relative to
corresponding elements within its corresponding reference data block and/or data
packet. In this regard, a “MemoryCompare” functionality is optionally used to
compare elements of a given data block and/or data packet with elements of a

reference data block and/or data packet.

Optionally, the reference data block and/or data packet is fixed. In an example, the
reference data block and/or data packet is similar for all of the data blocks and/or
data packets of the input data (D1). In another example, the reference data block
and/or data packet is similar for at least a subset of the data blocks and/or data
packets of the input data (D1).

Alternatively, optionally, the reference data block and/or data packet changes, based
on certain criteria, as will be elucidated below. In an example, when a number of
changed elements within a given data block and/or data packet and another block
and/or data packet is less than a predefined threshold number, then the given data
block and/or data packet can be taken as a reference data block and/or data packet

for any data block and/or data packet in the input data (D1). In another example, a

10

15

1801 16

20

25

30

-17 -

previous data block and/or data packet is taken as a reference data block and/or data
packet for a current data block and/or data packet in the input data (D1). Optionally,
the previous data block and/or data packet is a data block and/or data packet after
which the current data block consecutively followed. Alternatively, optionally, the
previous data block and/or data packet is a data block and/or data packet that
occurred in a previous frame, view or channel. Yet alternatively, optionally, the
previous data block and/or data packet is a data block and/or data packet that was
known or selected beforehand. Yet alternatively, optionally, the information of the
selected previous data block and/or data packet is delivered with a symbol or
reference number describing it or with, for example, a motion vector describing the

selected data block and/or data packet.

Optionally, the at least one corresponding symbol is represented by a predetermined
data value. Optionally, the predetermined data value is determined based on an
analysis of data values of changed elements of the data blocks and/or data packets
of the input data (D1); such analysis is performed, for example by performing a
statistical analysis of element values within data blocks present in the input data (D1).
Optionally, the predetermined data value is implemented as a zero data value.
Alternatively, optionally, bits are used to describe changed and unchanged data
values in a data block or packet and are sent to another stream, and in such a case,

only the changed data values are optionally encoded to the data stream.

Moreover, the processing hardware of the encoder 102 is operable to encode the
changed elements in the encoded data (E2). Optionally, for a lossless operation, the
processing hardware of the encoder 102 is operable to encode the changed
elements in their original form in the encoded data (E2). Alternatively, optionally, for a
lossy operation, the processing hardware of the encoder 102 is operable to encode at
least a portion of the changed elements in a quantized manner in the encoded data
(E2).

Yet alternatively, optionally, for a near-lossless operation, the processing hardware of
the encoder 102 is operable to encode at least some portion of the changed
elements in a quantized manner in the encoded data (E2). For this purpose, the
processing hardware of the encoder 102 is optionally operable to quantize only some

portions of the changed elements, based on an analysis of content, type and/or

10

O15

18 01 1

20

25

30

-18 -

composition of the input data (D1); such an analysis is operable, for example to
determine an occurrence of regions of interest in the input data (D1) which are
beneficially encoded with better or worse quality than other regions of interest.
Optionally, if the input data is medical, military, binary, text or similar data, then it
beneficially must be coded losslessly, but if the input data is audio, video, still images
and so forth, then lossy coding is beneficially allowed as well. Of course, there
potentially occur regions of interest in the input data (D1) which are benéeficially
encoded with better or worse quality than other regions of interest. Consequently,
the encoder 102 is capable of adaptively varying a compression ratio of lossily
encoded data by changing the quantization between the input data (D1) and the
encoded data (E2).

Moreover, optionally, the processing hardware of the encoder 102 is operable to
apply a compression algorithm to compress the encoded data (E2) to generate
compressed data (C4). In this regard, the encoder 102 is beneficially useable with
any contemporary entropy encoders; for example encoders utilizing Range coding,

SRLE, Delta coding, ODelta coding, EM, Arithmetic coding, Huffman coding.

Furthermore, the encoder 102 is operable to communicate the encoded data (E2) to
the data server and/or data storage 108 for storing in the database 110. The data
server and/or data storage 108 is arranged to be accessible to the decoder 112,
either via the communication network or via a direct connection, which is beneficially
compatible with the encoder 102, for subsequently decoding the encoded data (E2).
In an example where the compression algorithm is applied to compress the encoded
data (E2) to generate the compressed data (C4), the encoder 102 communicates the
compressed data (C4) in the encoded data (E2) to the data server and/or data
storage 108 either via a communication network or via a direct connection for storing
in the database 110.

In some examples, the decoder 112 is optionally operable to access the encoded
data (E2) or the compressed data (C4) from the data server and/or data storage 108.
In alternative examples, the encoder 102 is optionally operable to stream the
encoded data (E2) or the compressed data (C4) to the decoder 112, either via the
communication network 106 or via a direct connection. Optionally, in addition, a data

file can be produced as output of the encoder 102 and used as input for the decoder

10

—_
o

1801 16

N
o

25

30

-19 -

112. Moreover, it will be appreciated that a device equipped with a hardware or
software encoder can also communicate directly with another device equipped with a
hardware or software decoder. In yet other alternative examples, the decoder 112 is
optionally implemented so as to retrieve the encoded data (E2) or the compressed
data (C4) from a non-transitory (namely non-transient) computer-readable storage

medium, such as a hard drive and a Solid-State Drive (SSD).

The decoder 112 includes processing hardware that is operable to execute
computer-readable instructions stored on a non-transitory (namely non-transient)
computer-readable storage medium for decoding the encoded data (E2) to generate

corresponding decoded data (D3).

Optionally, the decoder 112 is implemented as a part of the computerized device
114. In this case, the processing hardware of the decoder 112 is included in the
computerized device 114. Examples of the computerized device 114 include, but are
not limited to, a mobile phone, a smart telephone, a Mobile Internet Device (MID), a
tablet computer, an Ultra-Mobile Personal Computer (UMPC), a phablet computer, a
Personal Digital Assistant (PDA), a web pad, a Personal Computer (PC), a handheld
PC, a laptop computer, a desktop computer, a large-sized touch screen with an
embedded PC, and an interactive entertainment device, such as a game console, a
video player, a Television (TV) set and a Set-Top Box (STB).

Alternatively, optionally, the decoder 112 is implemented independently, for example,
using another computerized device that includes the processing hardware of the
decoder 112.

When required, the processing hardware of the decoder 112 is operable to decode
the encoded data (E2) to generate the corresponding decoded data (D3). In this
regard, the processing hardware of the decoder 112 is operable to process the

encoded data (E2) as data blocks and/or data packets.

The processing hardware of the decoder 112 is operable to decode the encoded data
(E2) to generate data for the changed elements within the substantially reoccurring
data blocks and/or data packets within the encoded data (E2). Optionally, for a
lossless operation, the processing hardware of the decoder 112 is operable to

decode the changed elements to their original form in the decoded data (D3).

10

O15

18 01 1

20

25

30

-20 -

Alternatively, optionally, for a lossy operation, the processing hardware of the
decoder 112 is operable to decode at least a portion of the changed elements in a
quantized manner in the decoded data (D3); optionally, the quantized manner of
decoding employs a quantization which is variable, for example depending upon a
format or type of data present in the encoded data (E2), wherein such variable
quantization is capable on reducing power consumption in decoders, which is
important for low-power portable devices, for example battery-powered devices. Yet
alternatively, optionally, for a near-lossless operation, the processing hardware of the
decoder 112 is operable to decode at least some portion of the changed elements in

a quantized manner in the decoded data (D3).

Moreover, the processing hardware of the decoder 112 is operable to decode the
encoded data (E2) to generate data for the unchanged elements within the
substantially reoccurring data blocks and/or data packets within the encoded data
(E2). In the encoded data (E2), the unchanged elements are represented by the at
least one corresponding symbol, or at least one corresponding bit, for example a
single bit, indicating the absence of change in the unchanged elements relative to
corresponding elements in a reference data block and/or data packet, as described
earlier. Accordingly, optionally, the processing hardware of the decoder 112 is
operable to identify where the at least one corresponding symbol, or at least one
corresponding bit, for example a single bit, has occurred within a given data block
and/or data packet of the encoded data (E2), and to replace the at least one
corresponding symbol, or alternatively, to set at least one data value to the position of
the corresponding bit in the data block and/or data packet with corresponding

elements in the reference data block and/or data packet.

In an example where the decoder 112 is provided with the compressed data (C4), the
processing hardware of the decoder 112 is operable to apply a decompression
algorithm to decompress the compressed data (C4) to generate the encoded data
(E2) for decoding the encoded data (E2) to generate the data for the changed and

unchanged elements.

Moreover, the processing hardware of the decoder 112 is operable to assemble the
data generated for the changed and unchanged elements into data blocks and/or

data packets to generate the decoded data (D3). Optionally, the decoded data (D3)

10

—_
($;}

1801 16

25

30

-21 -

so generated is in a form of at least one of: text data, image data, video data, audio
data, binary data, sensor data, measurement data, graphical data, multi-dimensional

data and/or one-dimensional data, but not limited thereto.

Subsequently, optionally, the decoder 112 is operable to send the decoded data (D3)

to the computerized device 114.

Furthermore, optionally, the encoder 102 and the decoder 112 are arranged to be
implemented in a codec. Optionally, the codec is in a form of at least one of: a video
codec, an audio codec, an image codec and/or a data codec, but not limited thereto.
The codec optionally is used in portable electronic devices such as digital cameras,

mobile telephones, smart phones, surveillance equipment and such like.

Moreover, optionally, the encoder 102 and the decoder 112 are operable to
implement chunked transfer encoding for Hypertext Transfer Protocol (HTTP) and/or
Real-Time Messaging Protocol (RTMP). Optionally, the HTTP and/or RTMP employ
fixed-size data blocks and/or data packets inside requests and responses to the
requests. Typically, the RTMP resets a size of the data block and/or data packets
during a communication session periodically, based on a response time and capacity

of a communication network.

Fig. 1 is merely an example, which should not unduly limit the scope of the claims
herein. It is to be understood that the specific designation for the network
environment 100 is provided as an example and is not to be construed as limiting the
network environment 100 to specific numbers, types, or arrangements of encoders,
electronic devices, decoders, computerized devices, data servers and/or data
storages, databases, and communication networks. A person skilled in the art will
recognize many variations, alternatives, and modifications of embodiments of the

present disclosure.

Fig. 2 is an illustration of an example data flow, in accordance with an embodiment of
the present disclosure. For illustration purposes, an example will be described
wherein the electronic device 104 is an Internet Protocol (IP) camera that has been
employed at a facility for implementing a remote surveillance system, for example, for
detecting intruders and/or for detecting hazardous events, such as fire, flooding, and
the like.

10

—_
($;}

1801 16

N
o

25

30

-22 -

The IP camera is operable to provide the encoder 102 with sensor data as sensed by
one or more image sensors included within the IP camera. In this example, the
sensor data includes one-dimensional image data or-multi-dimensional image data

and/or video data and/or other types of data.

Moreover, in operation, a video captured by the electronic device 104 is streamed to

the computerized device 114 so as to be viewed by a user associated therewith.

In the example data flow, the input data (D1) is an original video captured by an IP
camera. The input data (D1) is typically large in size; and therefore, requires a large
data storage space for storing it in the database 110 and a large network bandwidth

for transferring it via the communication network 106 or via a direct connection.

In order to encode the input data (D1) to the encoded data (E2), the processing
hardware of the encoder 102 is operable to analyze content, type and/or composition
of the input data (D1). Based on the analysis, the processing hardware of the
encoder 102 is operable to divide image frames, views, or channels of the video into
a plurality of data blocks. The analysis beneficially involves, for example, computing
a spectrum of changes occurring in the input data (D1), for example a spectrum of
temporal rates of change in the input data (D1), and also an analysis of spatial
portions of temporal sequences of images and their associated rates of change in the
input data (D1). (Beneficially, the analysis is operable to find periodicities in the data,
namely recurring configurations of data, and where such periodicity is found, then it is
advantageous to conduct the division of the data to blocks or packets based on such

periodicity.

Optionally, each image frame, view or channel is divided into the data blocks in a
similar manner. This is particularly beneficial for enabling selection of reference data

blocks in previous image frames, views or channels.

This method is optionally used with a deduplication method or a block encoder, and
a corresponding block decoder, that are operable to detect reoccurrences, namely
selecting a suitable reference block, and to store and update the reference data
blocks and/or data packets. These methods further are operable to split the data into
suitable data blocks and/or data packets, and to combine the data blocks and/or data

packets back to generate the decoded data (D3). Optionally, a block encoder is used

10

18 01 16

N
o

25

30

-23-

to generate data streams that are then encoded with a deduplication method, for

example as described in the foregoing.

Optionally, the data blocks are rectilinear in relation to areas of data frames
represented by these data blocks, for example, 64 x 64 elements, 32 x 16 elements,
4 x 20 elements, 10 x 4 elements, 1 x 4 elements, 3 X 1 elements, 8 x 8 elements, 1 x
1 element and so on. However, it will be appreciated here that other shapes of data
blocks can alternatively be employed, for example, such as triangular, hexagonal,
elliptical and circular. In one example, the input data (D1) corresponds to an image of
billowing smoke or flames, or a turbulent water flow that includes multiple curved
image components that are inefficiently represented by rectilinear data blocks, but
map efficiently onto elliptical and circular data blocks, thereby providing potentially a
higher degree of data compression. Moreover, the term ‘data block’ optionally refers
to a data block as well as data segments included within the data block, throughout

the present disclosure.

Optionally, the data blocks have a predefined size. The predefined size is optionally
either user-defined or system-defined by default. Optionally, the predefined size is
defined by the encoder 102 based on the analysis of the content, type and/or
composition of the input data (D1), as described in the foregoing. Optionally, the data
blocks have a fixed size. Therefore, the size of the data blocks is either known to the
decoder 112 or transmitted only once to the decoder 112. When the data blocks have
a fixed size, header information describing the size of the data blocks is not required
to be written or transmitted, thereby enabling greater data compression to be

achieved.

Moreover, optionally, the processing hardware of the encoder 102 is operable to
define reference data blocks of a reference frame corresponding to data blocks of a
first image frame, or data block or data packet, of the video. For this purpose, the
processing hardware of the encoder 102 is operable to reset data values of elements
of the reference data blocks or data packets to a predetermined data value.

Optionally, the predetermined data value is implemented as a zero data value.

Alternatively, optionally, the processing hardware of the encoder 102 is operable to

write or transmit the first image frame, or data block or data packet, as it is, and to

10

—_
o

1801 16

N
o

25

30

-24 -

define the data blocks of the first image frame as the reference data blocks for a next
image frame. In an example, for a given data block in a current image frame, a
reference data block is selected to be a data block that is at a position in a previous
image frame that is similar to a position of the given data block in the current image
frame. In this example, data values of the previous image frame are required to be

stored in memory, instead of data values of the reference data block.

For a given data block, the processing hardware of the encoder 102 is operable to
process through data values of all elements of the given data block, and to compare
the data values of the elements of the given data block with data values of

corresponding elements of its corresponding reference data block.

Optionally, for a lossless operation, the data values are read without quantization. If a
data value of a particular element of the given data block is different from a data
value of a corresponding element of the reference data block, that particular element
is considered a changed element. Otherwise, if the data value of the particular
element of the given data block is identical, or optionally substantially identical, to the
data value of the corresponding element of the reference data block, that particular

element is considered an unchanged element.

Alternatively, optionally, for a lossy operation, the data values are quantized before
the comparison is made. If a difference between a quantized data value of a
particular element of the given data block and a quantized data value of a
corresponding element of the reference data block is greater than a predefined
threshold value, that particular element is considered a changed element. Otherwise,
if the difference between the quantized data values is smaller or equal to the
predefined threshold value, that particular element is considered an unchanged
element. Optionally, the predefined threshold value is based on a quality level set for
the lossy operation. The better the quality that is required, the smaller threshold value

that is used. The predefined threshold is zero for lossless operation.

Subsequently, the processing hardware of the encoder 102 is operable to encode, in
the encoded data (E2), unchanged elements of the given data block using at least
one corresponding symbol, or at least one corresponding bit, for example a single bit,

as described earlier. Additionally, the processing hardware of the encoder 102 is

10

—_
($;}

1801 16

25

30

-25-

operable to encode the changed elements in the encoded data (E2), as described

earlier.

Additionally, optionally, the processing hardware of the encoder 102 is operable to
write data values of the changed elements to the current or new reference data block.
Thus, the reference data block is optionally also used for a next data block, or next

data blocks.

In this manner, the processing hardware of the encoder 102 is operable to encode
the data blocks of the input data (D1) in the encoded data (E2). The encoder 102

then communicates the encoded data (E2) to the decoder 112, as shown in Fig. 2.

Next, in order to decode the encoded data (E2) to generate the corresponding
decoded data (D3), the processing hardware of the decoder 112 is operable to
identify occurrences of the at least one corresponding symbol or one corresponding
bit within a given data block within the encoded data (E2), and to replace the at least
one corresponding symbol or set the data value in the position of the corresponding
bit in a data block and/or data packet with corresponding elements in the reference
data block.

Subsequently, the processing hardware of the decoder 112 is operable to assemble
data generated for the changed and unchanged elements, to generate the decoded
data (D3).

Subsequently, the decoder 112 sends the decoded data (D3) to the computerized
device 114. Continuing from the aforementioned example of the data flow where the
input data (D1) is the original video, the user is presented the video on a display

screen of the computerized device 114.

Moreover, the encoder 102 optionally streams the encoded data (E2) to the decoder
112, whilst concurrently encoding the input data (D1) in real time. This is particularly
beneficial in a situation where source data is encoded at a multimedia server in real

time for streaming to users, for example, for Internet-delivered multimedia services.

Fig. 2 is merely an example, which should not unduly limit the scope of the claims
herein. A person skilled in the art will recognize many variations, alternatives, and

modifications of embodiments of the present disclosure.

10

O15

18 01 1

20

25

30

-26 -

In another example, the encoder 102 and/or the decoder 112 are implemented in a
similar manner to encode audio data, wherein the audio data may be divided into a
plurality of data packets and/or data sections. The term ‘data packet and/or data
section’ is synonymous with the term ‘data block and/or data packet’, but pertains to
audio data rather than image and/or video data. Optionally, the processing hardware
of the encoder 102 is operable to concurrently encode audio data along with image
and/or video data. When audio signals include tones which are sustained over many
cycles of audio signal and/or the music is rhythmic in nature with substantially
repetitive rhythmical patterns, such audio signals are efficiently compressed using
encoding methods of the present disclosure. Most contemporary popular music

tends to be repetitively rhythmic in nature.

However, it will be appreciated that the encoder 102 can be used to encode other
types of data in a similar manner, for example, including at least one of. economic
data, measurement data, seismographic data, analog-to-digital converted data,
biomedical signal data, textural data, calendar data, mathematical data, and binary

data, but not limited thereto.

The encoder 102 and the decoder 112 are suitable for various types of data, because
a majority of data being processed or encoded has been produced in a machine

language by machines, and therefore, is divisible to data blocks and/or data packets.

Moreover, principal traffic in communication networks includes transmitting requests
and responses to requests. This means data bytes are sent back and forth. These
data bytes mostly contain partially or entirely similar IP packet data. Therefore, the
encoder 102 and the decoder 112 are well-suited for communication protocols used

in transferring data packets.

For illustration purposes only, there will next be considered an example wherein the
input data (D1) includes five Transmission Control Protocol/Internet Protocol (TCP/IP)

frames, represented as following:

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 78 fa 40 00 76 06 ce 63 3e f1 c1 34 ac 10
11 3¢ 22 ¢9 c0 dc bd 1f b7 03 1f fe cO 92 50 10
00 fe b9 09 00 00

-27 -

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 0d 40 00 76 06 ce 50 3e f1 c1 34 ac 10
11 3¢ 22 ¢9 c0 dc bd 1f b7 03 1f fe c9 cc 50 10
01 02 af cc 00 00

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 11 40 00 76 06 ce 4c 3e f1 c1 34 ac 10
11 3¢ 22 ¢9 c0 dc bd 1f b7 03 1f fe d1 41 50 10
01 02 a8 57 00 00

10
00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 19 40 00 76 06 ce 44 3e f1 c1 34 ac 10
11 3¢ 22 ¢9 c0O dc bd 1f b7 03 1f fe dd a4 50 10
01 02 9b f4 00 00

15
00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 43 40 00 76 06 ce 1a 3e f1 c1 34 ac 10
11 3¢ 22 ¢9 c0O dc bd 1f b7 03 1f fe e9 95 50 10
01 02 90 03 00 00

20

In the example, the five TCP/IP frames have been randomly selected from numbers
#185 to #198. These TCP/IP frames require a total of 270 bytes (= 2160 bits) for

communicating over a communication network.

In operation, the processing hardware of the encoder 102 processes the TCP/IP

25 frames as individual data blocks, and encodes them in the encoded data (E2),

1801 16

represented as following:

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00

00 28 78 fa 40 00 76 06 ce 63 3e f1 c1 34 ac 10

11 3¢ 22 ¢9 c0 dc bd 1f b7 03 1f fe cO 92 50 10
30 00 fe b9 09 00 00

00 00 00 00 00O OO OO OO 00 00 OO OO0 00 00 00 00

00 00 79 Od 00 OO OO OO OO 50 OO OO 00 00 OO 00

00 00 00 00 00 OO OO OO 00 00 OO0 00 c9 cc 00 00
35 01 02 af cc 00 00

00 00 00 00 00 OO OO 00 00 00 00 00 00 0O OO 00

00 00 00 11 00 OO OO OO 00 4c 00 OO OO 00 00 00

00 00 00 00 00 OO OO 00 00 00 00 00 d1 41 00 00
40 00 00 a8 57 00 00

00 00 00 00 00 OO OO 00 00 00 00 00 00 00 OO0 00

00 00 00 19 00 OO0 OO OO 00 44 00 00 OO0 OO OO 0O

00 00 00 00 00 OO OO 00 00 00 00 00 dd a4 00 00
45 00 00 9b f4 00 0O

10

15

20

1801 16

25

30

35

-28 -

00 00 00 00 OO0 OO OO OO 00 00 OO OO0 00 00 00 00
00 00 00 43 00 OO OO OO OO0 1a OO OO OO OO OO OO
00 00 00 00 00O OO OO OO 00 00 OO 00 e9 95 00 00
00 00 90 03 00 00

In this example, the data value ‘00’ represents at least one corresponding symbol
indicating an absence of change in unchanged elements relative to corresponding
elements in a reference data block. Although the data value ‘00’ is also present in the
input data (D1), it does not cause any problems in this example, because no changed
data value is represented by ‘00’. Often, there is a need to use a symbol for
unchanged data elements that is not present in the input data (D1). Optionally,
unchanged/changed decision bits can be delivered with the changed data values
instead of delivering the predefined symbols for unchanged data and the changed

data values.

It is evident that the encoded data (E2) has low entropy, in comparison to the input
data (D1). When the encoded data (E2) is entropy-coded with an advanced range
coding method that is based on arithmetic compression, compressed data (C4) so
generated requires only 113 bytes (= 904 bits) for communicating over the
communication network. Correspondingly, when the input data (D1) is entropy-coded
in a similar manner, compressed input data so generated requires 253 bytes (= 2024
bits). Thus, an amount of data to be communicated over the communication network
is reduced by 140 bytes (253 — 113), namely, by 55.3 %. The original amount of input

data (D1) without any compression is 270 bytes.

In another example, there are processed two first frames of the previous example by
using quantization and bits describing the unchanged/changed decision. Quantization
is applied by using the divider value ‘2’, and dequantization by using the multiplier
value ‘2. The threshold for changed values is ‘1’, and the changed values are
expressed with the bit value ‘“1’, and the unchanged values with the bit value ‘0’. The

original data frames are as follows:

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 78 fa 40 00 76 06 ce 63 3e f1 c1 34 ac 10
11 3¢ 22 ¢c9 c0 dc bd 1f b7 03 1f fe cO 92 50 10
00 fe b9 09 00 00

1801 16

10

15

N
o

25

30

-29 -

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 0d 40 00 76 06 ce 50 3e f1 c1 34 ac 10
11 3¢ 22 ¢9 c0 dc bd 1f b7 03 1f fe c9 cc 50 10
01 02 af cc 00 00

The quantization is applied before the method, namely in reoccurrance detection, as

described in the foregoing.
The first frame values after quantization are as follows:

00 06 14 4e 5a Oe 00 08 79 15 15 56 04 00 22 00
00 14 3c 7d 20 00 3b 03 67 31 1f 78 60 1a 56 08
08 1e 11 64 60 6e 5e Of 5b 01 Of 7f 60 49 28 08
00 7f 5¢c 04 00 00

These values are delivered for the first frame, and they are set as a previous buffer
for prediction purposes of the next frame.

The input data values for the second frame after quantization are as follows:

00 06 14 4e 5a Oe 00 08 79151556 04 00 2200
00 14 3c 06 20 00 3b 03 67 281f 7860 1a 56 08
08 1e 11 64 60 6e 5e Of 5b 01 Of 7f 64 66 28 08
00 01 57 66 00 00

Now, the changed/unchanged bit stream can be generated and it is as follows:
0000000000000000 OO0O1000001000000O0
0000000000001100 011100

It contains 54 bits (7 ones and 47 zeros), and it can be efficiently compressed later by
an entropy encoder. For example, RLE generates a stream of data 19, 1, 5, 1, 18, 2,
3, 3, 2, which can be delivered , for example, with nine five bits values (= 9 * 5 bits =
45 bits). Range coding with probabilities 0.13 and 0.87 is also useable for delivering
the bits.

The seven changed values for the second frame are then as follows:
06 28 64 66 01 57 66

These seven changed values are optionally compressed with the first frame values

(54), for example by using Range coding. Without entropy encoding, they require 61 *

10

15

N
o

18 01 16

25

30

-30 -

7 bits = 428 bits. When the frames are decoded, then, after the dequantization, the

values for the two frames are as follows:

00 Oc 28 9c b4 1c 00 10 f2 2a 2a ac 08 00 44 00
00 28 78 fa 40 00 76 06 ce 623e fO cO 34 ac 10
10 3¢ 22 ¢c8 c0 dc bc 1e b6 02 1e fe cO 92 50 10
00 fe b8 08 00 00

00 Oc 28 9¢c b4 1c 00 10 f2 2a 2a ac08 00 44 00
00 28 78 Oc 40 00 76 06 ce 50 3e fO cO 34 ac 10
10 3¢c 22 ¢8 c0 dc bc 1e b6 02 1e fe ¢8 cc 50 10
01 02 ae cc 00 00

Fig. 3 is an illustration of steps of a method of encoding input data (D1) to generate
corresponding encoded data (E2), in accordance with an embodiment of the present
disclosure. The method is depicted as a collection of steps in a logical flow diagram,
which represents a sequence of steps that can be implemented in hardware,

software, or a combination thereof.

Optionally, at a step 302, substantial reoccurrences, namely repetitions, of data
blocks and/or data packets within the input data (D1) are identified. Optionally, this
step 302 is implemented with a deduplication method or with a block encoder.
Usually, the step 302 also includes an operation of splitting the input data (D1) into
new data blocks or data packets. Alternatively, the data split has already been carried
out before the step 302. Beneficially, only partially changed data blocks and/or data
packets are delivered further to a step 304 for encoding, wherein the changed data
blocks and/or data packets or unchanged data blocks and/or data packets are
encoded with different methods, as aforementioned. Optionally, the changed data
blocks and/or data packets and/or unchanged data blocks and/or data packets are

also delivered to the step 304 for encoding them.

It will be appreciated that, if a certain given reference data block and/or packet is
used, then it does not cause extra data to be transmitted. However, in some
situations, the information on the selection of the reference data block and/or packet
needs to be transmitted so that the decoder 112 will be aware of the reference data
block and/or packet and use the same one. Correspondingly, when partially changed
data blocks and/or packets are encoded, then if a portion of the data blocks and/or

packets are not given to the method, then the network environment 100 needs to

10

—_
($;}

1801 16

25

30

-31 -

have some sort of method selection information available, which also needs to be
delivered to the decoder 112. Optionally, as mentioned above, it is a block encoder or
a deduplication algorithm that takes care of delivering this piece of information,
otherwise all data blocks and/or packets are processed with the method pursuant to

the disclosure..

At the step 304, it is identified where elements are unchanged within the substantially
reoccurring data blocks and/or data packets, and/or where elements are changed

within the substantially reoccurring data blocks and/or data packets.

Next, at a step 306, changed and unchanged elements are encoded in the encoded
data (E2) as one data stream. Optionally, two data streams are processed, wherein
one data stream contains unchanged/changed decision bits and the other data

stream contains changed data values that are to be used.

In accordance with the step 306, the unchanged elements are encoded in the
encoded data (E2) by employing at least one corresponding symbol, or at least one
corresponding bit, for example a single bit, indicating an absence of change in the
unchanged elements relative to corresponding elements in a reference data block
and/or data packet. Optionally, the at least one corresponding symbol is represented

by a predetermined data value, which is optionally implemented as a zero data value.

Optionally, for a lossless operation, the changed elements are encoded in their
original form in the encoded data (E2). Alternatively, optionally, for a lossy operation,
at least a portion of the changed elements is encoded in a quantized manner in the
encoded data (E2). Yet alternatively, optionally, for a near-lossless operation, at least
a portion of the changed elements is encoded in a quantized manner in the encoded
data (E2).

The steps 304 and 306 are beneficially performed for partially changed data blocks
and/or data packets. Optionally, the steps 304 and 306 are performed for each data
block and/or data packet of the input data (D1). An encoding processing of the steps
304 and 306 has been described in conjunction with Figs. 4A and 4B.

Optionally, the method includes an additional step 308 at which a compression

algorithm is applied to compress the encoded data (E2) to generate compressed data

10

15

1801 16

20

25

30

-32 -

(C4). The compressed data (C4) is relatively small in size in comparison to the input
data (D1); and therefore, requires a small space for data storage and a small network
bandwidth for data transfer over a communication network or over a direct
connection. In the step 308, it is beneficial that typically entropy encoding methods
such as Range coding, SRLE, EM, ODelta coding and so forth are used there. The

step 308 is typically executed with a deduplication method or with a block encoder.

It will be appreciated that compression is optional, but if it is carried out, then either a
certain compression method is always used, or alternatively, information conveying
the selected compression method needs to be delivered from the encoder 102 to the
decoder 112. Typically, the selection of compression method has been left as the
responsibility of the block encoder or the deduplication method, but if necessary, the
method pursuant to the present disclosure can express and deliver the information
conveying information regarding the selected compression method, otherwise a
certain compression method is always used, for example a default compression

method.

Furthermore, the used reference data block and/or packet needs to be updated, or a
new reference data block and/or reference packet needs to be generated. Such a
step is also typically implemented with a deduplication method or with a block
encoder, but optionally the update of a reference data block and/or packet is carried

out with the steps 304 and 306 for reducing the amount of data copying.

Moreover, an amount of background memory allocated for the encoding processing
needs to be only as large as an amount of elements in a current data block and/or
data packet, times the amount of different reference data blocks and/or packets. If
only one reference data block and/or packet is used, then the amount of background
memory needed is the same as the size of the data block and/or packet. Moreover, a
result of the encoding processing, namely, the encoded data (E2), is optionally
written or transmitted directly into an original memory. This means that no separate
transfer memories are required. Therefore, the method is capable of functioning as

an in-place (in situ) operation, and is cost-effective.

The steps 302 to 308 are only illustrative and other alternatives can also be provided

where one or more steps are added, one or more steps are removed, or one or more

10

—_
o

1801 16

25

30

-33-

steps are provided in a different sequence without departing from the scope of the

claims herein.

Figs. 4A and 4B collectively are an illustration of steps of the encoding processing, in
accordance with an embodiment of the present disclosure. At a step 402, the data

block and/or packet is read, and the reference data block and/or packet is also read.

At a step 404, a data value of an element of a given data block and/or data packet of
the input data (D1) is read, and a data value of an element of a given reference data

block and/or packet is also read.

Next, at a step 406, it is determined whether or not the data value of the element has
changed against a data value of a corresponding element in a reference data block
and/or data packet. Beneficially, such determination detects that the value has
changed when the absolute difference between the values is higher than the
threshold value. Optionally, other methods can be used for determining changes of

data values.

If, at the step 406, it is determined that the data value of the element has not
changed, a step 408 is performed. At the step 408, a predetermined data value is
written to the encoded data (E2) to indicate an absence of change, otherwise a
decision bit indicating that the data value of the element has not changed is written to

a separate stream.

However, if it is determined that the data value of the element has changed, a step
410 is performed. At the step 410, the data value of the element is written to the
encoded data (E2) without or with optional quantization, and additionally, optionally a
decision bit indicating that the data value of the element has changed is written to a
separate stream. Optional quantization is also performed during the reoccurrence

detection.

Optionally, at the steps 406 and 408, the data value of the element is also written to
the new reference data block and/or data packet. Alternatively, optionally, the
changed data value in the step 408 is updated also to the current reference data
block and/or packet by using the original changed value with lossless processing and

preferably decoded changed value with lossy processing. Alternatively, the reference

10

—_
($;}

1801 16

25

30

-34 -

values are generated or updated with a deduplication method or with a block
encoder. The updated reference block and/or packet values are optionally used for

next data blocks and/or data packets.

Next, at a step 412, it is determined whether or not a next element exists in the given
data block and/or data packet. If it is determined that a next element exists, the
encoding processing restarts at the step 404. Otherwise, if it is determined that no
next element exists in the given data block and/or data packet, a step 414 is

performed.

At the step 414, it is determined whether or not a next data block and/or data packet
exists in the input data (D1). If it is determined that a next data block and/or data
packet exists, the encoding processing restarts at the step 402. Otherwise, if it is
determined that no next data block and/or data packet exists in the input data (D1),

the encoding processing stops.

The steps 402 to 414 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

Embodiments of the present disclosure provide a computer program product
comprising a non-transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising
processing hardware to execute the method as described in conjunction with Figs. 3
and 4A-B. The computer-readable instructions are optionally downloadable from a
software application store, for example, from an “App store” to a computerized

device.

Fig. 5 is an illustration of steps of a method of decoding encoded data (E2) to
generate corresponding decoded data (D3), in accordance with an embodiment of
the present disclosure. The method is depicted as a collection of steps in a logical
flow diagram, which represents a sequence of steps that can be implemented in

hardware, software, or a combination thereof.

10

18 01 16

N
o

25

30

-35-

Optionally, at a step 502, decoding of entropy-encoded data streams from the
compressed data (C4) to generate the encoded data (E2) is applied. This step 502
optionally typically employs entropy decoding methods such as Range coding, SRLE,
EM, ODelta coding and so forth. This step 502 is typically executed by employing a

deduplication method or by employing a block decoder.

At a step 504, the encoded data (E2) is searched to identify = changed and
unchanged elements within substantial reoccurrences of data blocks and/or data

packets within the encoded data (E2).

At a step 506, the encoded data (E2) is decoded to generate data for changed and
unchanged elements within the substantial reoccurrences of data blocks and/or data
packets within the encoded data (E2). In accordance with the step 504, occurrences
of at least one corresponding symbol or one corresponding bit indicative of an
absence of change are identified, and replaced with the corresponding symbol, or set
to the data value for position of the corresponding bit with corresponding elements in
a reference data block and/or data packet. For changed blocks, the absence of
change is not detected, the encoded value is used. Optionally, for a lossless
operation, the changed elements are decoded to their original form in the decoded
data (D3). Alternatively, optionally, for a lossy operation, at least a portion of the
changed elements is decoded in a quantized manner, namely dequantization is
carried out, in the decoded data (D3). Yet alternatively, optionally, for a near-lossless
operation, a part of the changed elements is decoded in a quantized manner in the
decoded data (D3).

The steps 504 and 506 are performed for partially changed data blocks and/or data
packets. Optionally, the steps 504 and 506 are performed for each data block and/or
data packet of the encoded data (E2). A decoding processing of the steps 504 and
506 has been described in conjunction with Figs. 6A and 6B.

Optionally, at a step 508, the data generated for the changed and unchanged
elements is assembled from the data blocks and/or data packets to generate the
decoded data (D3). This step 508 typically employs a deduplication method or a

block decoder.

10

—_
($;}

1801 16

25

-36 -

Moreover, the used reference data block and/or packet needs to be updated or a new
reference data block and/or packet needs to be generated. Such a step is also
typically performed with a deduplication method or with a block decoder, but
optionally, the updating of reference data block and/or packet is optionally carried out
within the steps 504 and 506 for reducing the amount of data copying occurring

during decoding operations.

The steps 502 to 508 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

Figs. 6A and 6B collectively are an illustration of steps of the decoding processing, in

accordance with an embodiment of the present disclosure.

At a step 602, a stream of data values of a given data block and/or data packet of the
encoded data (E2) is received. Optionally, the stream of bits describing
unchanged/changed elements in the data block and/or packet are also received.

Also, the reference data block and/or packet is read during the step 602.

Next, at a step 604, an element of a given data block and/or packet is read.
Alternatively, the unchanged/changed decision bit is read. An element of the

reference data block or packet is also read during the step 604.

Next, at a step 6086, it is determined whether or not a given element is unchanged. An
unchanged element is detected if a predetermined data value has occurred.

Alternatively, an unchanged element is detected, if the decision bit is unchanged.

If, at the step 606, the unchanged element is detected, a step 608 is performed. At
the step 608, a data value of a corresponding element in a reference data block

and/or data packet is written to the decoded data (D3).

Otherwise, if it is determined that the element has changed, a step 610 is performed.
At the step 610, the data value of the element is written to the decoded data (D3)
without or with optional dequantization. If the detection of changed value was made

based on the changed bit in decision bits, then the encoded value first needs to be

10

—_
($;}

1801 16

25

30

-37 -

read at this step, before it can be written to the decoded data (D3). Optional

quantization can also be performed during the data assembly.

Optionally, at the steps 608 and 610, the data value of the element is also written to
the new reference data block and/or packet. Alternatively, optionally, the changed
data value in the step 610 is also updated to the current reference data block and/or
packet by using the decoded changed value with lossless and lossy processing.
Alternatively, the reference values are generated or updated with a deduplication
method or with a block decoder, for example as described in the foregoing. The
updated reference data block and/or packet values is optionally used for next data

blocks and/or packets.

Next, at a step 612, it is determined whether or not a next element exists in the given
data block and/or data packet. If it is determined that a next element exists, the
decoding processing restarts at the step 604. Otherwise, if it is determined that no
next element exists in the given data block and/or data packet, a step 614 is

performed.

At the step 614, it is determined whether or not a next data block and/or data packet
exists in the encoded data (E2). If it is determined that a next data block and/or data
packet exists, the decoding processing restarts at the step 602. Otherwise, if it is
determined that no next data block and/or data packet exists in the encoded data

(E2), the decoding processing stops.

The steps 602 to 614 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

Embodiments of the present disclosure provide a computer program product
comprising a non-transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising

processing hardware to execute the method as described in conjunction with Figs. 5,

1801 16

10

N
(&)

-38 -

and Figs. 6A to 6B. The computer-readable instructions are optionally downloadable
from a software application store, for example, from an “App store” to a computerized

device, such as the computerized device 114.

Furthermore, embodiments of the present disclosure provide a codec including at
least one encoder as described in conjunction with Figs. 3, and Figs. 4A to 4B, and at

least one decoder as described in conjunction with Figs. 5 and Figs. 6A to 6B.

Embodiments of the present disclosure are susceptible to being used for various
purposes, including, though not limited to, enabling lossless or near-lossless data
compression of one-dimensional image data or multi-dimensional image data, video
data, audio data and any other type of data with a high compression ratio, in

comparison to conventional codecs.

Modifications to embodiments of the present disclosure described in the foregoing
are possible without departing from the scope of the present disclosure as defined by
the accompanying claims. Expressions such as ‘including’, “comprising’,
“incorporating”, “consisting of’, “have”, “is” used to describe and claim the present
disclosure are intended to be construed in a non-exclusive manner, namely allowing
for items, components or elements not explicitly described also to be present.

Reference to the singular is also to be construed to relate to the plural.

10

18 01 16

N
o

25

30

-39 -

CLAIMS
We claim:

1. An encoder including processing hardware for encoding input data (D1) to
generate corresponding encoded data (E2), wherein the processing hardware is
operable to process the input data (D1) as data blocks and/or data packets,

characterized in that

the processing hardware is operable to:

() identify substantial reoccurrences of data blocks and/or data packets within at
least a portion of the input data (D1), wherein the data blocks and/or data
packets include a corresponding plurality of elements, wherein the elements
include a plurality of bits;

(i) identify where elements are unchanged within the substantially reoccurring
data blocks and/or data packets, and/or where elements are changed within
the substantially reoccurring data blocks and/or data packets;

(i) encode unchanged elements in the encoded data (E2) by employing at least
one corresponding symbol or at least one corresponding bit indicating an
absence of change in the unchanged elements relative to corresponding
elements in a reference data block and/or data packet; and

(iv) encode changed elements in the encoded data (E2).

2. An encoder as claimed in claim 1, characterized in that the input data (D1) is in
a form of at least one of. text data, image data, video data, audio data, binary data,
sensor data, measurement data, graphical data, multi-dimensional data, uni-

dimensional data.

3. An encoder as claimed in claim 1 or 2, characterized in that the at least one

corresponding symbol is represented by a predetermined data value.

4. An encoder as claimed in claim 3, characterized in that the predetermined data

value is implemented as a zero data value.

10

—_
o

1801 16

N
o

25

30

- 40 -

5. An encoder as claimed in any one of the preceding claims, characterized in
that the processing hardware is operable to implement chunked transfer encoding for

Hypertext Transfer Protocol (HTTP) and/or Real-Time Messaging Protocol (RTMP).

6. An encoder as claimed in claim 5, characterized in that the HTTP and/or
RTMP employ fixed-size data blocks and/or data packets inside requests and

responses.

7. An encoder as claimed in any one of the preceding claims, characterized in
that the processing hardware is operable to encode at least a portion of the changed

elements in a quantized manner in the encoded data (E2).

8. An encoder as claimed in any one of the preceding claims, characterized in
that the processing hardware is operable to apply a compression algorithm to

compress the encoded data (E2).

9. A method of encoding input data (D1) to generate corresponding encoded
data (E2), wherein the method includes processing the input data (D1) as data blocks

and/or data packets, characterized in that

the method includes:

() identifying substantial reoccurrences of data blocks and/or data packets within
at least a portion of the input data (D1), wherein the data blocks and/or data
packets include a corresponding plurality of elements, wherein the elements
include a plurality of bits;

(i) identifying where elements are unchanged within the substantially reoccurring
data blocks and/or data packets, and/or where elements are changed within
the substantially reoccurring data blocks and/or data packets;

(i) encoding unchanged elements in the encoded data (E2) by employing at least
one corresponding symbol or at least one corresponding bit indicating an
absence of change in the unchanged elements relative to corresponding
elements in a reference data block and/or data packet; and

(iv) encoding changed elements in the encoded data (E2).

10

—_
o

1801 16

N
o

25

30

-41 -

10. A method as claimed in claim 9, characterized in that the method includes
encoding the input data (D1) received in a form of at least one of:. text data, image
data, video data, audio data, binary data, sensor data, measurement data, graphical

data, multi-dimensional data, uni-dimensional data.

11. A method as claimed in claim 9 or 10, characterized in that the method
includes representing the at least one corresponding symbol by a predetermined data

value.

12. A method as claimed in claim 11, characterized in that the predetermined data

value is implemented as a zero data value.

13. A method as claimed in any one of claims 9 to 12, characterized in that the
method includes implementing chunked transfer encoding for Hypertext Transfer
Protocol (HTTP) and/or Real-Time Messaging Protocol (RTMP).

14. A method as claimed in claim 13, characterized in that the HTTP and/or RTMP

employ fixed-size data blocks and/or data packets inside requests and responses.

15. A method as claimed in any one of claims 9 to 14, characterized in that the
method includes encoding at least a portion of the changed elements in a quantized

manner in the encoded data (E2).

16. A method as claimed in any one of claims 9 to 15, characterized in that the
method includes applying a compression algorithm to compress the encoded data

(E2) to generate corresponding compressed data (C4).

17. A computer program product comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute a method as claimed in claim 9.

18. A decoder including processing hardware for decoding encoded data (E2) to

generate corresponding decoded data (D3), wherein the processing hardware is

10

—_
o

1801 16

N
o

25

30

-42 -

operable to process the encoded data (E2) as data blocks and/or data packets,

characterized in that

the processing hardware is operable to:

() decode the encoded data (E2) to generate data for changed elements, the
changed elements being elements that are changed within substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2),

(i) decode the encoded data (E2) to generate data for unchanged elements, the
unchanged elements being elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2), wherein the unchanged elements are represented by at least one
corresponding symbol or at least one corresponding bit indicating an absence
of change in the unchanged elements relative to corresponding elements in a
reference data block and/or data packet; and

(i) assemble the data generated for the changed and unchanged elements in (i)
and (ii) into data blocks and/or data packets to generate the decoded data
(D3), wherein the data blocks and/or data packets include a corresponding

plurality of elements, wherein the elements include a plurality of bits.

19. A decoder as claimed in claim 18, characterized in that the decoded data (D3)
is in a form of at least one of. text data, image data, video data, audio data, binary
data, sensor data, measurement data, graphical data, multi-dimensional data, uni-

dimensional data.

20. A decoder as claimed in claim 18 or 19, characterized in that the at least one

corresponding symbol is represented by a predetermined data value.

21. A decoder as claimed in claim 20, characterized in that the predetermined data

value is implemented as a zero data value.

22. A decoder as claimed in any one of claims 18 to 21, characterized in that the
processing hardware is operable to implement chunked transfer encoding for

Hypertext Transfer Protocol (HTTP) and/or Real-Time Messaging Protocol (RTMP).

10

—_
o

1801 16

N
o

25

30

- 43 -

23. A decoder as claimed in claim 22, characterized in that the HTTP and/or
RTMP employ fixed-size data blocks and/or data packets inside requests and

responses.

24. A decoder as claimed in any one of claims 18 to 23, characterized in that the
processing hardware is operable to decode at least a portion of the changed

elements in a quantized manner in the decoded data (D3).

25. A decoder as claimed in any one of claims 18 to 24, characterized in that the
processing hardware is operable to apply a decompression algorithm to decompress
compressed data (C4) to generate the encoded data (E2) for decoding the encoded

data (E2) to generate the data for the changed and unchanged elements.

26. A method of decoding encoded data (E2) to generate corresponding decoded
data (D3), wherein the method includes processing the encoded data (E2) as data

blocks and/or data packets, characterized in that

the method includes:

() decoding the encoded data (E2) to generate data for changed elements, the
changed elements being elements that are changed within substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2);

(i) decoding the encoded data (E2) to generate data for unchanged elements, the
unchanged elements being elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within the encoded data
(E2), wherein the unchanged elements are represented by at least one
corresponding symbol or at least one corresponding bit indicating an absence
of change in the unchanged elements relative to corresponding elements in a
reference data block and/or data packet; and

(i) assembling the data generated for the changed and unchanged elements in
steps (i) and (ii) into data blocks and/or data packets to generate the decoded

data (D3), wherein the data blocks and/or data packets include a

10

—_
o

1801 16

N
o

25

30

- 44 -

corresponding plurality of elements, wherein the elements include a plurality of
bits.

27. A method as claimed in claim 26, characterized in that the method includes
generating the decoded data (D3) in a form of at least one of: text data, image data,
video data, audio data, binary data, sensor data, measurement data, graphical data,

multi-dimensional data, uni-dimensional data.

28. A method as claimed in claim 26 or 27, characterized in that the at least one

corresponding symbol is represented by a predetermined data value.

29. A method as claimed in claim 28, characterized in that the predetermined data

value is implemented as a zero data value.

30. A method as claimed in any one of claims 26 to 29, characterized in that the
method includes implementing chunked transfer encoding for Hypertext Transfer
Protocol (HTTP) and/or Real-Time Messaging Protocol (RTMP).

31. A method as claimed in claim 30, characterized in that the HTTP and/or RTMP

employ fixed-size data blocks and/or data packets inside requests and responses.

32. A method as claimed in any one of claims 26 to 31, characterized in that the
method includes decoding at least a portion of the changed elements in a quantized

manner in the decoded data (D3).

33. A method as claimed in any one of claims 26 to 32, characterized in that the
method includes applying a decompression algorithm to decompress compressed
data (C4) to generate the encoded data (E2) for decoding the encoded data (E2) to

generate the data for the changed and unchanged elements.

34. A computer program product comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute a method as claimed in claim 26.

1801 16

- 45 -

35. A codec including at least one encoder as claimed in claim 1 for encoding
input data (D1) to generate corresponding encoded data (E2), and at least one
decoder as claimed in claim 18 for decoding the encoded data (E2) to generate

corresponding decoded data (D3).

	Bibliography
	Drawings
	Description
	Claims

