UK Patent Application .,GB .,2527607 A

(43)Date of A Publication 30.12.2015
(21) Application No: 1411531.5 (51) INT CL:
HO3M 7/30 (2006.01) GO6F 3/06 (2006.01)
(22) Date of Filing: 27.06.2014 GOG6F 11/14 (2006.01) GOG6F 17/30 (2006.01)

HO4L 29/06 (2006.01) HO04N 19/00 (2014.01)

(71) Applicant(s): (56) Documents Cited:

sy EP 2350233 A1 EP 2256934 A1
Gurulogic Microsystems Oy US 7643505 B1 US 5434568 A
Linnankatu 34, Turku 20100, Finland US 20130315307 A1 US 20100115137 A1

(72) Inventor(s):
Tuomas Mikael Karkkainen
Ossi Kalevo

(58) Field of Search:
INT CL GO6F, GO6T, HO3M, H04L, HO4N
Other: WPI, EPODOC, INSPEC, TXTE

(74) Agent and/or Address for Service:
Basck Ltd
16 Saxon Road, CAMBRIDGE, Cambridgeshire,
CB5 8HS, United Kingdom

(54) Title of the Invention: Encoder, decoder and method
Abstract Title: Efficient de-duplication based encoding through identifying partial re-occurrences of data

(57) An encoder for encoding input data to generate corresponding encoded data is provided. In addition to identifying
206, 210 exact duplicates of reference blocks/packets, partial reoccurrences of data blocks or data packets
withinthe input data are also determined 210. At least one reference value is employed to relate reoccurrences of
mutually similar data blocks or data packets within the input data 212. A plurality of mask bits are employed to
indicate changed and unchanged data elements of partial reoccurrences of data blocks or data packets within the
input data. The at least one reference value 212, 214, the plurality of mask bits and data values of changed data
elements 208 are then encoded into the encoded data. Typical de-duplication compression techniques identify
exact re-occurrences of data whereas the arrangement described additionally identifies and utilises partial re-
occurrences. Pointers may be used to indicate relative positions to the partially re-occurring elements of a
reference block/packet. The output may be additionally encoded with further encoding such as entropy encoding. A
most optimal size for the blocks/packets of the processed input data may also be determined. A corresponding
method of decoding and a decoder is also described.

FIG. 3A ©

Read input data (D1) as frame/view/channel to determine
optimal data block/packet size, and split input data (D1)
into data blocks/packets 202

Read the data block/packet, and conduct the reference
block/packet search 204

Yes

Data block/packet
is a duplicate (referenced) ?
206

Data block/packet
is a full duplicate ?
210

Yes

Write a "no Write a reference Write a
duplicate symbol” symbol (e.g. 1to N) reference

(e.g. 0), and and encode symbol (e.g. N

encode all changed data 1 1o NJ;N)

(changed) data values, and 214
values 208 associated bit =
masks 212

6 & 6

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

vV L09.¢4¢ 99

1/7

Decoder 20

\/

VA

FIG. 1

217

' Start '
1

JL

~

Determine at least partial reoccurrences
of data blocks/packets within input data (D1)
102

Encode unchanged and changed

data blocks/packets into data streams
104

Entropy-encode data streams

to generate encoded data (E2)
106

1

Stop

FIG.

3/7

Start

Read input data (D1) as frame/view/channel to determine
optimal data block/packet size, and split input data (D1)
into data blocks/packets 202

Read the data block/packet, and conduct the reference
block/packet search 204

v

Data block/packet
is a duplicate (referenced) ?
206

Yes

Data block/packet
is a full duplicate ?
210

Yes

Write a "'no Write a reference Wiite a
duplicate symbol” symbol (e.g. 1 to N) reference

(e.g. 0), and and encode symbol (e.g. N

encode all changed data 31 o Nﬁ\i)

(changed) data values, and 014
values 208 associated bit =
masks 212

5 6 ¢

FIG. 3A

4/7

Next data
block/packet exists?
216

Next data
frame/view/channel
exists?
218

Yes)@

FIG. 3B

SI7

' Start '
1

J

N

Entropy-decode encoded data (E2)
to provide data streams
302

I

Decode unchanged and changed
blocks/packets from data streams
304

J[

Assemble decoded blocks/packets to
generate decoded data (D3)
306

10
(Stop)

FIG. 4

6/7

Start Q

Read reference symbol from data stream 402

Reference symbol
is a “no duplicate”
reference symbol ?
404

No

Reference symbol
is a “full duplicate”
symbol ?
408

Yes
Decode changed data Set] g
values and €l unchange
E)Ceh%ondgeegl)l combine decoded values from
data values tol | changed values and reference
generate data unchanged values block/packet to
for Non- from reference generate fully
duplicate block/packet to duplicate
block/packet generate data for block/packet
406 partially duplicate 412
- block/packet 410

G ®

FIG. 5A

77

Next reference symbol
exists ?
414

Assemble
generated data into
decoded data (D3)

416

FIG. 5B

Intellectual
Property
Office

Application No. GB1411531.5 RTM Date :19 December 2014

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

Windows Azure

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

10

15

20

25

30

ENCODER, DECODER AND METHOD

TECHNICAL FIELD

The present disclosure relates to encoders for encoding input data (D1) to generate
corresponding encoded data (E2); the present disclosure also relates to methods of
encoding input data (D1) to generate corresponding encoded data (E2). Moreover,
the present disclosure concerns decoders for decoding encoded data (E2) to
generate corresponding decoded data (D3); the present disclosure also concerns
methods of decoding encoded data (E2) to generate corresponding decoded data
(D3). Furthermore, the present disclosure is concerned with computer program
products comprising a non-transitory computer-readable storage medium having
computer-readable instructions stored thereon, the computer-readable instructions
being executable by a computerized device comprising processing hardware to
execute aforesaid methods. Additionally, the present disclosure concerns codecs
including at least one aforementioned encoder and at least one aforementioned

decoder.

BACKGROUND

Various known documents providing a technological background for the present

disclosure are listed in the APPENDIX associated with the present disclosure.

Generally, algorithms used to compress data are based either on a lossless
compression method [3] or on a lossy compression method [4]. In lossless
compression, various files, namely data (D1), are compressed in such a manner that

the data (D1) can later be recovered as it was originally.

Conventionally, it is known to employ data de-duplication methods [5] when encoding
the data (D1), which attempt to eliminate duplicate copies of segments of data in the
data (D1), namely those data segments which have not changed when they

repetitively reoccur when the data (D1) is, for example, temporally streamed. Known

10

15

20

25

30

data de-duplication methods are able to find efficiently such data blocks that are

exactly similar to a desired data block.

Generally, known data de-duplication methods recognize previously occurring data

segments by using various different methods, such as:

Q) by detecting a number of changed data elements in a given data segment
relative to a reference data segment;

(i) by computing a sum of absolute differences between data elements of the
given data segment and the reference data segment;

(i) by utilizing redundancy check tables; or

(iv) by employing sliding-block methods.

Entire files can also be de-duplicated, in which case a symbol used to replace

duplicate files produces an excellent compression ratio [3].

Moreover, data de-duplication can be executed in a post-processed manner, in which
case associated data processing is performed retroactively after the data (D1) has
been written. Alternatively, data de-duplication can be performed in real-time, namely
just as the data (D1) enters a given system, in which case a given recognized data
block is not written at all, but instead, a reference is made to an earlier data block

which is mutually similar to the given recognized data block.

Data de-duplication is used in various branches of contemporary information
technology industry, such as in data storage and in data transfer networks. For
example, data de-duplication is used in cloud services, in system backup copying
and in e-mail servers, wherein mutually similar files, or only slightly changed
substantially mutually similar files, are transferred continuously. Moreover, in Internet
communication networks, where responses to requests are sent, data bytes are
transmitted back and forth, and those bytes mostly contain partly or entirely the same
Internet Protocol (IP) packet data; data de-duplication is relevant to Wide Area

Network (WAN) Optimization, for example.

It is well-known previously that known data de-duplication methods are more cost-
efficient in comparison to traditional data compression methods. However, the known

data de-duplication methods suffer from several disadvantages. Firstly, the known

10

15

20

25

30

de-duplication methods often use considerable data memory and processing power
as they attempt to achieve a desired data compression ratio. Generally, an
associated search area, namely an amount of memory used to find similarities,
needs to be increased to improve the data compression ratio. Moreover, CPU-
intensive methods, such as a sliding search method, need to be used to improve the
data compression ratio. The sliding search method seeks to identify a target data
block or data packet in a raw fashion by shifting inside a search area to a direction

pointed to by an algorithm employed for implementing the sliding search method.

Secondly, the known data de-duplication methods are not able to find such data
blocks or data packets whose content has changed slightly, but which still contains a

lot of unchanged data elements relative to the desired data block.

Thirdly, the known data de-duplication methods potentially result in data
fragmentation, especially when the processing associated with these de-duplication

methods is executed in real time.

SUMMARY

The present disclosure seeks to provide an improved encoder employing de-

duplication techniques that are capable of providing improved encoding performance.

Moreover, the present disclosure seeks to provide an improved decoder employing

duplication techniques that are capable of providing improved decoding performance.

In a first aspect, embodiments of the present disclosure provide an encoder for
encoding input data (D1) to generate corresponding encoded data (E2). The encoder
includes processing hardware for processing the input data (D1). Optionally, the
processing hardware of the encoder is operable to encode the input data (D1)
provided as at least one of. one-dimensional data, multi-dimensional data, audio
data, image data, video data, sensor data, text data, binary data, medical data, but

not limited thereto.

10

15

20

25

30

The processing hardware of the encoder is operable to determine at least partial
reoccurrences of data blocks or data packets within the input data (D1). For this
purpose, the processing hardware of the encoder is optionally operable to determine
a most optimal size for the data blocks or data packets. Additionally, the processing
hardware of the encoder is optionally operable to provide, within the encoded data
(E2), information indicative of the most optimal size for the data blocks or data

packets.

Moreover, the processing hardware of the encoder is operable to employ at least one
reference symbol to relate reoccurrences of mutually similar data blocks or data
packets within the input data (D1). In this regard, the processing hardware of the
encoder is optionally operable to employ one or more pointers for indicating one or
more at least partial reoccurrences of data blocks or data packets relative to their

corresponding reference data block or data packet.

Optionally, the one or more pointers are one or more relative pointers.

Moreover, the processing hardware of the encoder is operable to employ a plurality
of mask bits to indicate changed and unchanged data elements of partial

reoccurrences of data blocks or data packets within the input data (D1).

Alternatively, optionally, the processing hardware of the encoder is operable to
represent one or more unchanged data elements of a given data block or data packet
by using one or more values indicative of no change, wherein the one or more values

are different to those present in the input data (D1).

Moreover, the processing hardware of the encoder is operable to encode the at least
one reference symbol, the plurality of mask bits and data values of changed data
elements into the encoded data (E2). Optionally, the processing hardware of the
encoder is operable to encode the at least one reference symbol, the plurality of
mask bits and the data values of the changed data elements into a plurality of data

streams to provide the encoded data (E2).

10

15

20

25

30

Moreover, optionally, the encoder includes an additional encoding unit for encoding
at least a portion of the at least one reference symbol, the plurality of mask bits and
the data values of the changed data elements into the encoded data (E2). This
additional encoding unit is optionally operable to employ at least one of. entropy
modifying encoding, delta encoding, ODelta encoding as described in patent
application GB1303661.1 filed on 1% of March 2013, 1u or 8u range encoding, Run
Length Encoding (RLE), Split RLE (SRLE) as described in patent application
GB130360.3 filed on 1% of March, 2013, interpolation encoding.

Embodiments of the present disclosure are of advantage in that the encoder is
capable, by way of its approach to implementing de-duplication, of providing

enhanced encoding performance.

In a second aspect, embodiments of the present disclosure provide a simple and fast

method of encoding input data (D1) to generate corresponding encoded data (E2).

In a third aspect, embodiments of the present disclosure provide a computer program
product comprising a non-transitory (namely non-transient) computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute the aforementioned method.

In a fourth aspect, embodiments of the present disclosure provide a decoder for
decoding encoded data (E2) to generate corresponding decoded data (D3). The

decoder includes processing hardware for processing the encoded data (E2).

Optionally, the processing hardware of the decoder is operable to receive, within the
encoded data (E2), information indicative of a size of data blocks or data packets.

The processing hardware of the decoder is operable to decode the encoded data
(E2) to identify at least one reference symbol, a plurality of mask bits and data values
of changed data elements. Optionally, the processing hardware of the decoder is

operable to decode the at least one reference symbol, the plurality of mask bits and

10

15

20

25

30

the data values of the changed data elements from the plurality of data streams

provided within the encoded data (E2).

Optionally, the processing hardware of the decoder is operable to decode the
encoded data (E2) to identify one or more pointers indicating one or more at least
partial reoccurrences of data blocks or data packets relative to their corresponding

reference data packet or data block.

The processing hardware of the decoder is then operable to employ the at least one
reference symbol, namely the one or more pointers, to generate data for at least

partial reoccurrences of data blocks or data packets within the encoded data (E2).

Moreover, the processing hardware of the decoder is operable to employ the plurality
of mask bits to generate data for changed data elements of partial reoccurrences of

data blocks or data packets within the encoded data (E2).

Alternatively, optionally, the processing hardware of the decoder is operable to
decode one or more unchanged data elements of a given data block or data packet
from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

Subsequently, the processing hardware of the decoder is operable to assemble the
data generated for the at least partial reoccurrences of data blocks or data packets
and the data generated for the changed data elements of the partial reoccurrences of

data blocks or data packets, to generate the decoded data (D3).

Moreover, optionally, the decoder includes an additional decoding unit for decoding
at least a portion of the at least one reference symbol, the plurality of mask bits and
the data values of the changed data elements from the encoded data (E2). This
additional decoding unit is optionally operable to employ at least one of. entropy
modifying decoding, delta decoding, ODelta decoding, 1u or 8u range decoding, run

length decoding, split run length decoding, interpolation decoding.

10

15

20

25

30

In a fifth aspect, embodiments of the present disclosure provide a simple and fast
method of decoding encoded data (E2) to generate corresponding decoded data
(D3).

In a sixth aspect, embodiments of the present disclosure provide a computer
program product comprising a non-transitory (namely non-transient) computer-
readable storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute the aforementioned method.

In a seventh aspect, embodiments of the present disclosure provide a codec

including the aforementioned encoder and the aforementioned decoder.

Additional aspects, advantages, features and objects of the present disclosure would
be made apparent from the drawings and the detailed description of the illustrative

embodiments construed in conjunction with the appended claims that follow.

It will be appreciated that features of the present disclosure are susceptible to being
combined in various combinations without departing from the scope of the present

disclosure as defined by the appended claims.

DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed description of illustrative
embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the present disclosure, exemplary
constructions of the disclosure are shown in the drawings. However, the present
disclosure is not limited to specific methods and apparatus disclosed herein.
Moreover, those in the art will understand that the drawings are not to scale.

Wherever possible, like elements have been indicated by identical numbers.

Embodiments of the present disclosure will now be described, by way of example

only, with reference to the following diagrams wherein:

10

15

20

25

30

FIG. 1 iIs a schematic illustration of an encoder for encoding input data (D1) to
generate corresponding encoded data (E2) and a decoder for decoding the
encoded data (E2) to generate corresponding decoded data (D3), wherein
the encoder and the decoder collectively form a codec, in accordance with
an embodiment of the present disclosure;

FIG.2 is an illustration of steps of a method of encoding input data (D1) to
generate corresponding encoded data (E2), in accordance with an
embodiment of the present disclosure;

FIGs. 3A and 3B collectively are an illustration of steps of an encoding process, in
accordance with an embodiment of the present disclosure;

FIG. 4 s an illustration of steps of a method of decoding encoded data (E2) to
generate corresponding decoded data (D3), in accordance with an
embodiment of the present disclosure; and

FIGs. 5A and 5B collectively are an illustration of steps of a decoding process, in

accordance with an embodiment of the present disclosure.

In the accompanying diagrams, an underlined number is employed to represent an
item over which the underlined number is positioned or an item to which the
underlined number is adjacent. A non-underlined number relates to an item identified
by a line linking the non-underlined number to the item. When a number is non-
underlined and accompanied by an associated arrow, the non-underlined number is

used to identify a general item at which the arrow is pointing.

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description illustrates embodiments of the present disclosure
and ways in which they can be implemented. Although the best mode of carrying out
the present disclosure has been disclosed, those skilled in the art would recognize
that other embodiments for carrying out or practicing the present disclosure are also

possible.

In overview, embodiments of the present disclosure are concerned with methods of
processing data, and apparatus for performing such processing of data, wherein data
de-duplication and duplication are performed, as will be elucidated in greater detail

below.

10

15

20

25

30

Referring to FIG. 1, embodiments of the present disclosure concern:

() an encoder 10 for encoding input data (D1) to generate corresponding
encoded data (E2), and corresponding methods of encoding the input data
(D1) to generate the encoded data (E2),

(i) a decoder 20 for decoding the encoded data (E2) to generate corresponding
decoded data (D3), and corresponding methods of decoding the encoded data
(E2) to generate the decoded data (D3); and

(i) a codec 30 including a combination of at least one encoder and at least one

decoder, namely a combination of the encoder 10 and the decoder 20.

Optionally, the decoded data (D3) is exactly similar to the input data (D1), as in a
lossless mode of operation. Alternatively, optionally, the decoded data (D3) is
approximately similar to the input data (D1), as in a lossy mode of operation. Yet
alternatively, optionally, the decoded data (D3) is different to the input data (D1), for
example by way of a transformation, but retains substantially similar information
present in the input data (D1); for example, the decoded data (D3) is usefully made
different to the input data (D1) when reformatting of the data (D3) is also required, for
example to be compatible with different types of communication platform, software

layer, type of communication device, and so forth.

The encoder 10 includes processing hardware for processing the input data (D1).
Optionally, the processing hardware of the encoder 10 is operable to encode the
input data (D1) provided as at least one of: one-dimensional data, multi-dimensional
data, audio data, image data, video data, sensor data, text data, binary data, medical
data but not limited thereto. Optionally, the input data (D1) is received as a stream or
a file. Optionally, the input data (D1) includes a lot of small variations, for example a
mixture of structured details and noise.

The processing hardware of the encoder 10 is operable to determine at least partial
reoccurrences of data blocks or data packets within the input data (D1). For this
purpose, the processing hardware of the encoder 10 is optionally operable to
determine a most optimal size for the data blocks or data packets, as will be

elucidated in greater detail below. Additionally, the processing hardware of the

10

15

20

25

30

-10 -

encoder 10 is optionally operable to provide, within the encoded data (E2),

information indicative of the most optimal size for the data blocks or data packets.

In order to determine the at least partial reoccurrences of data blocks or data
packets, the processing hardware of the encoder 10 is operable to employ one or
more redundancy checks using one or more suitable redundancy checking methods.
Optionally, a redundancy checking method is employed to select a data block or data
packet that maximises a count of unchanged data elements, or minimizes a sum of
absolute errors between data elements of the data block or data packet and data

elements of a corresponding reference data block or data packet.

Additionally, optionally, the redundancy checking method is employed to compute
one or more redundancy-check values for a given data block or data packet. In an
example, a single long redundancy-check value is calculated for the given data block
or data packet. In another example, multiple short redundancy-check values are

calculated for the given data block or data packet.

If a redundancy-check value computed for the given data block or data packet does
not match with any previously stored information sufficiently well, then the given data
block or data packet is identified as a non-duplicate data block or data packet. This
non-duplicate data block or data packet is written or delivered as it is in the encoded
data (E2). Additionally, optionally, the non-duplicate data block or data packet can
also be inserted as a new reference data block or data packet into a stored

information sequence for redundancy checking purposes.

Beneficially, the redundancy-check values can be computed in various ways, but a
main consideration is that they should be able to distinguish non-duplicate data
blocks or data packets with sufficient precision. However, it will be appreciated that it
is not advantageous to waste computing resources of the processing hardware of the
encoder 10 by computing an unnecessarily precise redundancy-check value, if a
given task can be implemented by using an optimized algorithm, which is less

computation and data memory resource-intensive.

10

15

20

25

30

-11 -

Moreover, the processing hardware of the encoder 10 is operable to employ at least
one reference symbol to relate reoccurrences of mutually similar data blocks or data
packets within the input data (D1). In this regard, the processing hardware of the
encoder 10 is optionally operable to employ one or more pointers for indicating one
or more at least partial reoccurrences of data blocks or data packets relative to their
corresponding reference data block or data packet. Thus, the at least one reference
symbol is employed as the one or more pointers that point to the corresponding

reference data block or data packet.

Optionally, the one or more pointers are one or more relative pointers that indicate
relative distances of the one or more at least partial reoccurrences of data blocks or
data packets from the corresponding reference data block or data packet within the
input data (D1). In other words, the one or more pointers optionally indicate positions
of the one or more at least partial reoccurrences of data blocks or data packets
relative to the corresponding reference data block or data packet within the input data
(D1).

Optionally, the one or more pointers include reference addresses to particular
locations, where information pertaining to their corresponding reference data blocks
or data packets can be obtained. Optionally, the one or more pointers include
reference addresses to a piece of information that needs to be used when decoding
the encoded data (E2) to reconstruct the decoded data (D3). In other words, the one
or more pointers point to data memory locations of their corresponding reference

data blocks or data packets.

Moreover, optionally, the one or more pointers are expressed as at least one of: byte-
accurate pointers, data-value-accurate pointers, word-accurate pointers, or block-

accurate pointers.

Moreover, the processing hardware of the encoder 10 is operable to employ a
plurality of mask bits to indicate changed and unchanged data elements of partial
reoccurrences of data blocks or data packets within the input data (D1). Optionally, a
mask bit associated with an unchanged data element is set to a ‘O’ value, while a

mask bit associated with a changed data element is set to a ‘1’ value, or vice versa.

10

15

20

25

30

-12 -

Thus, the plurality of mask bits describe which data elements are changed and which

data elements are unchanged.

Alternatively, optionally, the processing hardware of the encoder 10 is operable to
represent one or more unchanged data elements of a given data block or data packet
by using one or more values indicative of no change, wherein the one or more values

are different to those present in the input data (D1).

Moreover, the processing hardware of the encoder 10 is operable to encode the at
least one reference symbol, the plurality of mask bits and data values of changed
data elements into the encoded data (E2). Optionally, the processing hardware of the
encoder 10 is operable to encode the at least one reference symbol, the plurality of
mask bits and the data values of the changed data elements into a plurality of data

streams to provide the encoded data (E2).

The changed data elements are written or transmitted as such if a lossless mode of
operation is used. If a lossy mode of operation is used, the changed data elements

are quantized.

If a near-lossless mode of operation is used, at least a portion of the changed data
elements is quantized. For this purpose, the processing hardware of the encoder 10
is optionally operable to quantize only some portions of the changed data elements,
based on an analysis of content, type and/or composition of the input data (D1).
Consequently, the encoder 10 is capable of adaptively varying a data compression

ratio between the input data (D1) and the encoded data (E2).

Moreover, the changed data elements are encoded, for example, as at least one of:
original data values, quantized original data values, delta values, quantized delta
values, ODelta values, or quantized ODelta values. Herein, “ODelta” refers to a
differential form of encoding based upon wraparound in a binary counting regime, for
example as described in patent document GB1303661.1, hereby incorporated by

reference.

10

15

20

25

30

-13 -

Optionally, when original values, delta values or ODelta values are used to write and
deliver changed data elements with respect to a reference data block or data packet,
the unchanged data elements are, for example, set to a value of “0”, indicating no
change, or to a value that is not otherwise present in the data. The latter option is a
better solution when original values are used, but it requires delivery of the value that
is not otherwise present in the data. Subsequently, a changed data element is set
either to its original data value or to a delta value, namely a data value that is equal
to a difference between the original data value and a corresponding data value in the
reference frame, block or packet, with or without quantization. If the changed data
element is set to its original data value, and that data value happens to be equal to
“0”, and “0” is also used to indicate unchanged data elements, then a confusion,
namely a data ambiguity, potentially occurs. Therefore, the latter option is preferable
to employ in embodiments of the present disclosure, namely using a data value that
is not otherwise present in the data to avoid such ambiguity. Then, the data value
that is used to indicate the unchanged data elements is delivered in encoded data
(E2). A method described in GB1411451.6 is a good example of a method that can
be used with this embodiment of the present disclosure, when a reference symbol is
used to indicate the reference data block or data packet, for example some previous

data block or data packet.

If the lossy mode of operation is used, namely a form of quantization is used, and
reference symbols are simultaneously updated or added, then beneficially the
processing hardware of the encoder 10 takes into account, when forming the
reference blocks, those changes that de-quantization will cause to corresponding
decoded data (D3). The effect of quantization is also beneficially taken into account
when determining a data value to be used to indicate the unchanged data elements
when changed data elements are delivered with quantized original values. When
quantized delta values or quantized ODelta values are used for delivery of changed
data elements, then the quantization beneficially do not change the changed values

to zero when zero is used for unchanged data elements.

Moreover, optionally, the encoder 10 includes an additional encoding unit for
encoding at least a portion of the at least one reference symbol, the plurality of mask

bits and the data values of the changed data elements into the encoded data (E2).

10

15

20

25

30

-14 -

This additional encoding unit is optionally operable to employ at least one of: entropy
modifying encoding, delta encoding, ODelta encoding, 1u or 8u range encoding, Run
Length Encoding (RLE), Split RLE (SRLE), interpolation encoding.

Furthermore, optionally, the encoder 10 is operable to communicate the encoded
data (E2) to a data server and/or data storage (not shown in Fig. 1) for storing in a
database (not shown in Fig. 1). The data server and/or data storage is arranged to be
accessible to the decoder 20, which is beneficially compatible with the encoder 10,

for subsequently decoding the encoded data (E2).

In some examples, the decoder 20 is optionally operable to access the encoded data

(E2) from the data server and/or data storage.

In alternative examples, the encoder 10 is optionally operable to stream the encoded
data (E2) to the decoder 20, either via a communication network or via a direct
connection. Moreover, it is to be noted that a device equipped with a hardware-based
or software-based encoder can also communicate directly with another device

equipped with a hardware-based or software-based decoder.

In yet other alternative examples, the decoder 20 is optionally implemented so as to
retrieve the encoded data (E2) from a non-transitory (namely non-transient)
computer-readable storage medium, such as a hard drive and a Solid-State Drive
(SSD).

The decoder 20 includes processing hardware for processing the encoded data (E2).

Optionally, the processing hardware of the decoder 20 is operable to receive, within
the encoded data (E2), information indicative of a size of the data blocks or data

packets.

The processing hardware of the decoder 20 is operable to decode the encoded data
(E2) to identify the at least one reference symbol, the plurality of mask bits and the
data values of the changed data elements. Optionally, the processing hardware of

the decoder 20 is operable to decode the at least one reference symbol, the plurality

10

15

20

25

30

-15 -

of mask bits and the data values of the changed data elements from the plurality of

data streams provided within the encoded data (E2).

Optionally, the processing hardware of the decoder 20 is operable to decode the
encoded data (E2) to identify the one or more pointers indicating one or more at least
partial reoccurrences of data blocks or data packets relative to their corresponding

reference data packet or data block.

The processing hardware of the decoder 20 is then operable to employ the at least
one reference symbol, namely the one or more pointers, to generate data for at least
partial reoccurrences of data blocks or data packets within the encoded data (E2).
The one or more pointers, being optionally the one or more relative pointers, enable
the processing hardware of the decoder 20 to determine positions of the at least
partial reoccurrences of data blocks or data packets relative to their corresponding

reference data packets or data blocks.

Moreover, the processing hardware of the decoder 20 is operable to employ the
plurality of mask bits to generate data for changed data elements of partial

reoccurrences of data blocks or data packets within the encoded data (E2).

Alternatively, optionally, the processing hardware of the decoder 20 is operable to
decode one or more unchanged data elements of a given data block or data packet
from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

Subsequently, the processing hardware of the decoder 20 is operable to assemble
the data generated for the at least partial reoccurrences of data blocks or data
packets and the data generated for the changed data elements of the partial

reoccurrences of data blocks or data packets, to generate the decoded data (D3).

Optionally, the decoded data (D3) is provided as at least one of: one-dimensional
data, multi-dimensional data, audio data, image data, video data, sensor data, text

data, binary data, medical data but not limited thereto.

10

-16 -

Moreover, optionally, the decoder 20 includes an additional decoding unit for

decoding at least a portion of the at least one reference symbol, the plurality of mask

bits and the data values of the changed data elements from the encoded data (E2).

This additional decoding unit is optionally operable to employ at least one of: entropy

modifying decoding, delta decoding, ODelta decoding, 1u or 8u range decoding, run

length decoding, split run length decoding, interpolation decoding.

Furthermore, methods of data processing that occur in the encoder 10 and the

decoder 20 optionally include sub-methods as described in respect of a patent

application GB1411451.6, hereby incorporated by reference, wherein the sub-

methods of this patent application are provided in Table 1.

Table 1: Sub-methods employed in the encoder 10 and the decoder 20

Use Region

Sub-method Detail

Encoder 10

A method of encoding input data (D1) to generate corresponding

encoded data (E2), wherein the method includes processing the

input data (D1) as data blocks and/or data packets, characterized in

that the method includes:

(i)

(iii)

(iv)

identifying substantial reoccurrences of data blocks and/or
data packets within the input data (D1);

identifying where elements are unchanged within the
substantially reoccurring data blocks and/or data packets,
and/or where elements are changed within the substantially
reoccurring data blocks and/or data packets;

encoding unchanged data elements in the encoded data
(E2) by employing at least one corresponding symbol or at
least one corresponding bit indicating an absence of change
in the unchanged data elements relative to corresponding
elements in a reference data block and/or data packet; and

encoding changed data elements in the encoded data (E2).

Decoder 20

A method of decoding encoded data (E2) to generate

corresponding decoded data (D3), wherein the method includes

10

-17 -

processing the encoded data (E2) as data blocks and/or data

packets, characterized in that the method includes:

(1) decoding the encoded data (E2) to generate data for
changed data elements, the changed data elements being
elements that are changed within substantial reoccurrences
of data blocks and/or data packets within the encoded data
(E2);

(i) decoding the encoded data (E2) to generate data for
unchanged data elements, the unchanged data elements
being elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within the
encoded data (E2), wherein the unchanged data elements
are represented by at least one corresponding symbol or at
least one corresponding bit indicating an absence of change
in the unchanged data elements relative to corresponding
elements in a reference data block and/or data packet; and

(i) assembling the data generated for the changed and
unchanged data elements in steps (i) and (ii) into data blocks

and/or data packets to generate the decoded data (D3).

FIG. 1 is merely an example, which should not unduly limit the scope of the claims
herein. It is to be understood that the specific designation for the codec 30 is
provided as an example and is not to be construed as limiting the codec 30 to
specific numbers, types, or arrangements of encoders and decoders. A person
skilled in the art will recognize many variations, alternatives, and modifications of

embodiments of the present disclosure.

Optionally, the codec 30 is implemented within a single device. Alternatively,
optionally, the codec 30 is effectively implemented between multiple devices. In an
example, the codec 30 is optionally implemented as a broadcast system, wherein
there is an encoder 10 at a first spatial location and a plurality of decoders 20 at a

plurality of other spatial locations.

10

15

20

25

30

-18 -

The codec 30 can be implemented as at least one of. a data codec, an audio codec,
an image codec and/or a video codec. The codec 30 is capable of compressing the

input data (D1) in a pre-processing stage in real time.

Moreover, the codec 30 can be implemented to provide a real-time data transfer
network coding method, which considerably saves bandwidth required for data
transfer, especially in such systems that are based on request-response type
communications, such as Hypertext Transfer Protocol (HTTP) [6] that is used in web
browsers and World Wide Web (www) servers for data transfer. In addition to the
HTTP protocol, the Real-Time Messaging Protocol (RTMP) [7] is often used for real-
time full-duplex data transfer in audio and video delivering services, and also in
playback video services. Thus, the codec 30 is relevant to both HTTP-based data

communication systems and RTMP-based data communication systems.

Moreover, optionally, the encoder 10 and the decoder 10 are operable to implement
chunked transfer encoding for HTTP and/or RTMP. Optionally, the HTTP and/or
RTMP employ fixed-sized data blocks and/or data packets inside requests and

responses to the requests.

The codec 30 is especially well-suited for communication protocols that are used to
transfer data blocks or data packets whose size is set exactly. For example, chunked
transfer encoding used in HTTP is an optimal usage area, because requests and
responses to the requests transferred in the chunked transfer encoding employ fixed-
sized data blocks or data packets. As huge amounts of data are transmitted over the
HTTP, a considerably high data compression ratio is achieved when the encoder 10

is employed to encode input data (D1) to generate corresponding encoded data (E2).

In respect of embodiments of the present disclosure, a further benefit gained by
using the HTTP is that an HTTP request/response, almost without exception,
contains precise information on what is being transferred and when it is being
transferred. This enables selection of optimal redundancy check tables for use during
encoding of the input data (D1). This potentially improves an associated data

compression ratio that is achievable.

10

15

20

25

30

-19 -

Similar to HTTP, RTMP also defines specifications regarding transfer of data blocks
or data packets that have a specific defined size. On the Internet, the RTMP is often
used to transfer audio, image or video information, especially in real-time
communication. During a communication process, a size for a data block or data
packet to be transferred is initialized at pre-set intervals according to a response time
and a capacity of a transfer network employed. This potentially improves the data

compression ratio that is achievable.

If transfer networks are used and a given transmitting party does not yet know
whether or not an encoding method pursuant to the present disclosure is to be
employed, it is possible to implement a proxy server that transforms information for a
recipient of data, in which case a desired compression ratio can be achieved
between a possibly slow recipient and a fast transmitter. In this scenario, the proxy
server informs the recipient about unchanged data elements of at least one
previously transmitted data block or data packet by sending a reference symbol
along with changed data elements, and mask bits or other indication of changed and

unchanged data elements in the data block or data packet to the recipient.

In an example, the proxy server is an HTTP-proxy or RTMP-proxy server, which is
situated at an optimal geographical location with respect to an associated data
supply service to be optimized and associated users to be served. Optionally,
methods pursuant to embodiments of the present disclosure are employed to make

ready-made cloud server solutions, such as Windows Azure [8], more efficient.

During the last few years (2010+), an amount of transfers of data, audio, image and
video has increased so rapidly that not even Moore’s Law [9] is able to follow that
kind of growth. Therefore, the codec 30 is potentially very useful for making data
transfers more efficient.

For illustration purposes only, there is next provided a numerical example of an
encoding method as executed within the encoder 10. In this example, the input data
(D1) includes data values that might correspond to separate audio packets, separate
image blocks, HTTP packet headers and so forth. The input data (D1) includes five

frames/blocks/packets, wherein each frame/block/packet contains 54 data values. It

10

15

20

25

30

35

-20 -

can be understood that the input data (D1) has 270 data values, for example from an
18x15 image that is split into 18x3 data blocks. This results into five data blocks,
each of which has 54 data values. Alternatively, the input data (D1) can also be
considered to be 270 data values from a certain data stream that is generated by a
block encoder, for example as described in US patent document US 8,675,731 B2,

hereby incorporated by reference, for compression purposes.

The input data (D1) includes 270 data values (entropy = 1428.35 bits ~= 179 bytes),

and is represented as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, 0,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, 0, 0, O, 12, 41, 157, 180, 29, 0O, 16, 243, 42,
42,172, 8, 0, 69, 0, 0, 40, 121, 13, 64, 0, 118, 6, 206, 80, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31, 254, 201, 204, 80, 16, 1, 2, 175, 204,
0,0,0,12, 41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0,69, 0, 0, 40, 121, 17,64, 0
118, 6, 206, 76, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3
31, 254, 209, 65, 80, 16, 1, 2, 168, 87, 0, 0, 0, 12, 41, 157, 180, 29, O, 16, 243, 42,
42,172, 8, 0, 69, O, O, 40, 121, 25, 64, O, 118, 6, 206, 68, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31, 254, 221, 164, 80, 16, 1, 2, 155, 244,
0,0,0,12, 41,157,180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 121, 67,64, 0
118, 6, 206, 26, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 233, 149, 80, 16, 1, 2, 144, 3,0, 0

The input data (D1) is optionally entropy encoded, for example to 253 bytes, by using
an 8u range encoding method. By referring to such 8u range encoding, what is
meant with this is a range coding method which is used for coding 8-bit data values

in codec pursuant to the present disclosure. Range coding is explained here

. http://en.wikipedia.org/wiki/Range_coding

which is hereby incorporated by reference.

Now, this result includes also transmitting a probability table or a reasonably good
fixed table out of currently 22 alternative fixed probability tables in codec pursuant to

the present disclosure. The share of the range coded data is beneficially quite close

to the entropy, namely 179 bytes in this example, if a perfect probability table were

10

15

20

25

30

35

-21 -

known and there would then be a need to transmit and/or approximate with a less

applicable probability table.

In order to determine a most optimal size for data blocks (hereinafter referred to as
“most optimal block size”), the processing hardware of the encoder 10 operates to
perform an initial run with an initial block size of seven. An Initial block size is
beneficially selected to be a relatively small number, for example in a range of 3 to 8,
to enable accurate detection of a most optimal block size. For example, this block

size of seven results in 39 data blocks as follows:
270=38x7 +4

wherein 38 data blocks have a size of seven data values and one last data block has

a size of four data values.

For a given data block, a reference symbol ‘1’ is used for a corresponding reference
data block that arrives one data block before the given data block. Likewise, a
reference symbol ‘2’ is used, if the reference data block arrives one data block and
one data value before the given data block, and so on. Thus, the reference symbol

indicates a position of the reference data block relative to the given data block.

For the sake of clarity, an example 9" data block and its corresponding reference

data block have been underlined and represented as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0O, 69, 0, 0, 40, 120, 250, 64, O,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, 0, 0, 0, 12, 41, 157, 180, 29, 0, 16, 243, 42,
42,172, 8, 0, 69, 0, O, 40, 121, 13, 64, 0, 118, 6, 206, 80, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31, 254, 201, 204, 80, 16, 1, 2, 175, 204,
0,0,0,12, 41,157,180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 121, 17,64, 0
118, 6, 206, 76, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3
31, 254, 209, 65, 80, 16, 1, 2, 168, 87, 0, 0, O, 12, 41, 157, 180, 29, 0, 16, 243, 42,
42,172, 8, 0, 69, 0, 0, 40, 121, 25, 64, 0, 118, 6, 206, 68, 62, 241, 193, 52, 172, 16,
17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31, 254, 221, 164, 80, 16, 1, 2, 155, 244,
0,0,0,12, 41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 67,64, 0
118, 6, 206, 26, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3
31, 254, 233, 149, 80, 16,1, 2, 144,3,0,0

10

15

20

25

30

-22-

It will be appreciated that the actual reference data block is typically got from the
decoded data, but, because this data is now coded losslessly, then also the original
data values can be used for reference data blocks. As the reference data block
arrives 48 data values before the example data block, a reference symbol ‘48’ is

assigned for the example data block.

The first index of the reference data block is optionally calculated, in this example,

using the data-value-accurate reference indexing by using a following equation:

first_index_of_reference_data_block = first_index_of_current_data_block +
block_size + reference_symbol —

number_of_nearest_reference.
With this example for the 9" data block, the equation get values such as:
56+7+48-1=2,

wherein the first_index_of_current_data_block is calculated from a following

equation:

first_index_of_current_data_block = (number_of _current_data_block — 1) *

block_size,

wherein the number_of _current_data_block is 9 and the block_size is 7, for example.
The reference symbol, namely “48”,of the 9" data block have been underlined also

from the reference symbols after the next chapter.

It will be appreciated that a first data block does not have a corresponding reference
data block, and therefore, is not assigned a reference symbol. However, the last data
block is assigned its corresponding reference symbol. It will also be appreciated that
the last data block is incomplete, and therefore, data values of only four first data
elements of the reference data block are used to code the last data block. Thus, 38

reference symbols are assigned as follows:

10

15

20

25

30

35

-23-

707
8, 4

1

31, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,

0,000,000,
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 34

4

1 H H

The processing hardware of the encoder 10 then operates to calculate the most

optimal block size, for example, as follows:

<most common reference symbol> + <initial block size> — <reference symbol used
for a nearest possible reference block>

=48 +7 -1

=54

Optionally, some other reference symbol that occurs often and has a smaller value
than the most common reference symbol can be used in the most optimal block size
equation instead of most common reference symbol to enable deduplication for
higher amount of smaller blocks. It will also be appreciated that a number_of_a
nearest_reference is beneficially not used as a most common reference number,
because it might be affected with long continuum of similar data values and,

consequently, it might be sub-optimal.

In this manner, the encoding method involves finding reoccurrences of data blocks in
their own size, so that the data blocks do not need to be split into smaller data
segments, namely akin to a known slide search method. It is also evident that there
iIs no need to search for duplicate data blocks iteratively among all previously stored
information with all lengths and all positions, which would waste valuable computing

time and resources.

It will be appreciated that in case there is found a reasonably small number, but not
1, reference values, and a lot of used reference values, then it is often beneficial to
be used instead of the most commonly used reference value when calculating the
most optimal size for the block or packet. It will be further appreciated that the
preliminary search is beneficial to execute with relatively small block or packet sizes,
so that the short reference is not lost, but anyhow with sufficiently large block or
packet size so that lengthy chain of same data values does not result to first

reference value becoming the most common one. In an event that such a situation

10

15

20

25

30

35

40

- 24 -

occurs, then it is beneficial to select some often occurring small value which however
is bigger than 1, for calculating the most optimal size for the block or packet instead

of the most commonly used reference.

Now, the processing hardware of the encoder 10 operates to perform a next run with
the most optimal block size, namely a block size of 54. This results in five data blocks

as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, 0, 0, 40, 120, 250, 64, 0O,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, O, O,

0,12, 41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 13, 64, 0, 118,
6, 206, 80, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 201, 204, 80, 16, 1, 2, 175, 204, 0, O,

0, 12, 41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 17, 64, 0, 118,
6, 206, 76, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 209, 65, 80, 16, 1, 2, 168, 87, 0, 0,

0, 12, 41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 25, 64, 0, 118,
6, 206, 68, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 221, 164, 80, 16, 1, 2, 155,244, 0, O,

0, 12, 41,157,180, 29, 0, 16, 243, 42, 42,172, 8, 0, 69, 0, 0, 40, 121, 67, 64, 0, 118,

6, 206, 26, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3, 31,
254, 233, 149, 80, 16,1, 2, 144, 3,0, 0

Hereinabove, changed data elements of partial reoccurrences of data blocks have

been underlined for the sake of clarity.

Moreover, for the sake of clarity, 216 mask bits associated with 216 data elements of

last four data blocks (54 x 4 = 216) are represented as follows:

,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,

7070707010711070701070107 0701

10

15

20

25

30

35

0
0

707070701071)070701070307 0707

0,0¢6060000000000
0,0000000001,1,0,0,

Hereinabove, a mask bit associated with an unchanged data element is set to a ‘0’

value, while a mask bit associated with a changed data element is set to a ‘1’ value.

The processing hardware of the encoder 10 then operates to encode data values of
the changed data elements, the mask bits associated with the changed and
unchanged data elements, and reference symbols relating partial reoccurrences of
mutually similar data blocks into a plurality of data streams to provide the encoded
data (E2). In the example, the plurality of data streams includes a first data stream, a

second data stream and a third data stream, as elucidated below.

The first data stream includes data values of 54 data elements of the first data block
and data values of 27 changed data elements in subsequent data blocks (entropy =

460.24 bits ~= 58 bytes), and is represented as follows:

0, 12, 41, 157, 180, 29, 0, 16, 243, 42, 42, 172, 8, 0, 69, O, 0, 40, 120, 250, 64, O,
118, 6, 206, 99, 62, 241, 193, 52, 172, 16, 17, 60, 34, 201, 192, 220, 189, 31, 183, 3,
31, 254, 192, 146, 80, 16, 0, 254, 185, 9, 0, 0, 121, 13, 80, 201, 204, 1, 2, 175, 204,
17,76, 209, 65, 168, 87, 25, 68, 221, 164, 155, 244, 67, 26, 233, 149, 144, 3

The second data stream includes 27 bytes (216/8 = 27) denoting 216 mask bits
associated with 216 data elements of the subsequent data blocks (entropy = 117.41

bits ~= 15 bytes), and is represented as follows:

0,0, 12, 2,0, 48, 15,0, 0,130, 0, 0, 12, 3, 0, 128, 32, 0, 0, 195, 0, 0, 32, 8, 0, 192,
48

The third data stream includes four reference symbols indicating corresponding
reference data blocks for the subsequent data blocks (entropy = 0 bits ~= 0 bytes),

and is represented as follows:
1,1,1,1

These reference symbols indicate that the first data block is a corresponding
reference data block for a second data block, the second data block is a

corresponding reference data block for a third data block, and so on. Herein, the

10

15

20

25

30

-26 -

reference symbols act as relative pointers that indicate positions of the data blocks

relative to their corresponding reference data blocks or data packets.

As the reference symbols are sorted according to when they occur chronologically,
the entropy produced by the third data stream is reduced considerably. In an
alternative implementation, the reference symbols are optionally inserted into a table
as they occur chronologically into an adaptive order. In such a case, the third data

stream can be delta-coded efficiently.

In an event that it is desirable to refer only to a previous data block or data packet,
namely a data block or data packet that arrives just before a given data block or data
packet, the third data stream need not be written or transmitted in the encoded data
(E2).

The aforementioned method of encoding is considerably more cost-efficient than

known data de-duplication methods, because it is capable of:

(i) finding partially duplicated? data blocks or data packets apart from fully
duplicated? data blocks or data packets; and

(i) encoding only changed data elements in the encoded data (E2).

Writing or transmitting only the changed data elements in the encoded data (E2)
reduces a time needed for processing the encoded data (E2), an amount of encoded
bytes within the encoded data (E2) and an entropy [1,2] of the encoded data (E2) as
compared to the input data (D1). Thus, a considerably high data compression ratio is

achieved as compared to the known data de-duplication methods.

When the input data (D1) is multi-dimensional data, an order in which data values are
defined in data blocks is also an important property, pursuant to embodiments of the
present disclosure. For illustration purposes only, there is now considered a two-
dimensional (2D) image data having 16x16 data values, which can be divided into 16
data blocks in two ways, namely a first case where 16 data blocks have 1x16 or 16x1
data values each and a second case where 16 data blocks have 4x4 data values

each. It will be appreciated that multi-dimensional features, namely spatial correlation

10

15

20

25

30

-27 -

between the data blocks, cannot be utilized as properly in the first case as can be

utilized in the second case.

Furthermore, optionally, the additional encoding unit of the encoder 10 operates to
compress further the three data streams, namely the first, second and third streams,
by employing one or more suitable entropy encoding methods. Additionally or
alternatively, optionally, the processing hardware of the encoder 10 operates to
compress further the three data streams recursively using the aforementioned
encoding process. This results in a high degree of data compression in the encoded
data (E2).

The encoded data (E2) is then delivered from the encoder 10 to the decoder 20. The
additional decoding unit of the decoder 20 then operates to decompress the encoded
data (E2). Thereafter, the processing hardware of the decoder 20 operates to
execute a decoding process pursuant to embodiments of the present disclosure. The
decoded data (D3) so generated is exactly similar to the input data (D1), as a
lossless mode of operation was used. Consequently, a sum of squared error
between original data elements of the input data (D1) and data elements of the

decoded data (D3) is zero.

There will now be described a lossy mode of operation of the encoder 10, using the
same input data (D1) of the above example. In the lossy mode of operation, a data

compression ratio can be improved even more.

Optionally, the input data (D1) is quantized prior to identifying at least partial
reoccurrences of data blocks or data packets. In an example situation where a
quantization value of four is used, 38 reference symbols assigned with respect to the
initial block size of seven are represented as follows:

1,0,0,0,0, 2, 33, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 50

In this example situation, the most optimal block size is 54.

10

15

20

25

30

35

40

-28 -

The processing hardware of the encoder 10 then operates to encode the data values
of the changed data elements, the mask bits and reference symbols into three data

streams to provide the encoded data (E2), as elucidated below.

A first data stream includes quantized data values of 54 data elements of the first
data block and quantized data values of 25 changed data elements in the

subsequent data blocks, and is represented as follows:

0, 3,10, 39, 45, 7, 0, 4, 60, 10, 10, 43, 2, 0, 17, 0, O, 10, 30, 62, 16, 0, 29, 1, 51, 24,
15, 60, 48, 13, 43, 4, 4, 15, 8, 50, 48, 55, 47, 7, 45, 0, 7, 63, 48, 36, 20, 4, 0, 63, 46,
2,00, 3,20, 50, 51, 0, 43, 51, 4, 19, 52, 16, 42, 21, 6, 17, 55, 41, 38, 61, 16, 6, 58,
37,36,0

A second data stream includes 27 bytes denoting 216 mask bits associated with 216

data elements of the subsequent data blocks, and is represented as follows:

0,082,048 14,0,0,130,0,0, 12, 3,0, 128, 32,0, 0, 195, 0, 0, 32, 8, 0, 192, 48

A third data stream includes four reference symbols indicating corresponding

reference data blocks for the subsequent data blocks, and is represented as follows:

1,1,1,1

When required, the processing hardware of the decoder 20 operates to decode the
encoded data (E2), namely the aforementioned three data streams, to generate the

decoded data (D3). The decoded data (D3) so generated is represented as follows:

0, 12, 40, 156, 180, 28, 0O, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 248, 64, O,
116, 4, 204, 96, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0,
28, 252, 192, 144, 80, 16, 0, 252, 184, 8, O, 0,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 12, 64, 0, 116,
4, 204, 80, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 200, 204, 80, 16, 0, 0, 172, 204, 0, O,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 16, 64, 0, 116,
4, 204, 76, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 208, 64, 80, 16,0, 0, 168, 84, 0, 0,

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 24, 64, 0, 116,
4, 204, 68, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252, 220, 164, 80, 16, 0, 0, 152, 244, 0, O,

10

15

20

25

30

35

-29 -

0, 12, 40, 156, 180, 28, 0, 16, 240, 40, 40, 172, 8, 0, 68, 0, 0, 40, 120, 64, 64, 0, 116,
4, 204, 24, 60, 240, 192, 52, 172, 16, 16, 60, 32, 200, 192, 220, 188, 28, 180, 0, 28,
252,232, 148,80, 16,0, 0, 144,0,0,0

Hereinabove, the five data blocks have been shown separated, and changed data
elements of partial reoccurrences of data blocks have been underlined for the sake of

cClarity only.
The sum of squared error between the original data elements of the input data (D1)
and the data elements of the decoded data (D3) is 535. This corresponds to some

data loss between the input data (D1) and the decoded data (D3).

Defining Reference Symbols:

Optionally, a reference symbol ‘0’ is used to indicate non-duplicate data blocks or
data packets, namely data blocks or data packets that are not duplicates of any

previous data block or data packet.

Optionally, when there are ‘N’ different reference data blocks or data packets,
reference symbols ‘1’ to ‘N’ are used to indicate partially duplicate data blocks or data
packets, namely data blocks or data packets that are partial duplicates of their
respective reference data blocks or data packets. Herein, ‘N’ is any positive integer

greater than 1.

In the previous examples described in the foregoing, the reference symbol ‘0’ was
not used, as none of the data blocks was a non-duplicate data block or data packet.
Instead, the reference symbol ‘1’ was used, as each of the subsequent data blocks

was a partial duplicate of its corresponding reference data block.

Moreover, when there are multiple reference data blocks or data packets available
for a given data block or data packet, a reference data block or data packet can be
selected from amongst the multiple reference data blocks or data packets. During
selection, a distance of the reference data block or data packet relative to the given

data block or data packet is beneficially taken into account to find a probable

10

15

20

25

30

-30-

reference symbol with a lower value, without compromising on a match between the

selected reference data block or data packet and the given data block or data packet.

Optionally, when the input data (D1) is large and/or there is a large amount of
redundancy in the input data (D1), separate reference symbols are used for fully
duplicate data blocks or data packets, namely data blocks or data packets that are

exact duplicates of their respective reference data blocks or data packets.

In one implementation of the encoder 10, when there are ‘N’ different reference data

blocks or data packets, the reference symbols are optionally defined as follows:

(i) the reference symbol ‘O’ is used to indicate non-duplicate data blocks or data
packets;

(i) the reference symbols ‘1’ to ‘N’ are used to indicate partially duplicate data
blocks or data packets; and

(i) reference symbols ‘“1+N’ to ‘N+N’ are used to indicate fully duplicate data

blocks or data packets.

For illustration purposes herein, there will now be considered an example wherein
four reference data blocks are identified in the input data (D1). These four reference
data blocks are assigned reference symbols as follows:

reference symbol ‘1’ to a first reference data block;

reference symbol 2’ to a second reference data block;

reference symbol ‘3’ to a third reference data block; and

reference symbol ‘4’ to a fourth reference data block.

In this example, value of ‘N’ is four (N = 4).

Now, if a fifth data block in the input data (D1) is a partial duplicate of the second
reference data block, the fifth data block is represented by using the reference
symbol ‘2’. If a sixth data block in the input data (D1) is a full duplicate of the second
reference data block, the sixth data block is represented by using the reference

symbol ‘6’, namely 2+N’.

In an alternative implementation, a one-bit symbol is optionally used to indicate

whether a given data block or data packet is a full duplicate or a partial duplicate. The

10

15

20

25

30

-31-

one-bit symbol is used in addition to a reference symbol for the given data block or
data packet. Herein, the reference symbol indicates a corresponding reference data
block or data packet for the given data block or data packet, while the one-bit symbol
indicates whether the given data block or data packet is a full duplicate or a partial
duplicate of the corresponding reference data block or data packet. The one-bit
symbol has two values, namely ‘0’ and ‘1’. For example, the value ‘0" of the one-bit
symbol can be used to indicate a partial duplicate, while the value ‘1’ of the one-bit

symbol can be used to indicate a full duplicate, or vice versa.

In yet other alternative implementations, the partially duplicate data blocks or data
packets can be defined by using block indexes, data indexes, motion vectors,

database references, encoding methods, and so forth.

Optionally, when separate reference symbols are not used for fully duplicate data
blocks or data packets, then mask bits associated with all unchanged data elements

of the fully duplicate data blocks or data packets are set to a ‘0’ value.

On the other hand, when separate reference symbols are used to indicate fully
duplicate data blocks or data packets, the fully duplicate data blocks or data packets
do not need mask bits. Likewise, when separate reference symbols are used to
indicate non-duplicate data blocks or data packets, the non-duplicate data blocks or

data packets do not need mask bits.

Moreover, optionally, the mask bits are encoded by using a database, as described
in patent application GB 1222240.2, US 13/715,405, hereby incorporated by
reference. When there is a high probability that the mask bits reoccur, the data
compression ratio is susceptible to being improved by delivering a reference to the
mask bits, as compared to entropy-encoding the mask bits as such.

Next, embodiments of the present disclosure will be further described with reference
to the drawings, namely FIG. 2 to FIG. 5B.

FIG. 2 is an illustration of steps of a method of encoding input data (D1) to generate

corresponding encoded data (E2), in accordance with an embodiment of the present

10

15

20

25

30

-32-

disclosure. The method is depicted as a collection of steps in a logical flow diagram,
which represents a sequence of steps that can be implemented in hardware,

software, or a combination thereof.

At a step 102, at least partial reoccurrences of data blocks or data packets within the

input data (D1) are determined.

At a step 104, unchanged and changed data blocks or data packets are encoded by
employing at least one reference symbol and a plurality of mask bits. As described
earlier, the at least one reference symbol is employed to indicate at least partial
reoccurrences of mutually similar data blocks or data packets within the input data
(D1). Additionally, the plurality of mask bits are employed to indicate changed and
unchanged data elements of partial reoccurrences of data blocks or data packets
within the input data (D1).

In accordance with the step 104, the at least one reference symbol, the plurality of
mask bits and the data values of the changed data elements are encoded into a

plurality of data streams, as described earlier.

An encoding processing of the steps 102 and 104 has been described in conjunction
with FIGs. 3A and 3B.

Next, at a step 106, the plurality of data streams are entropy-encoded to generate the
encoded data (E2).

The steps 102 to 106 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

FIGs. 3A and 3B collectively are an illustration of steps of the encoding processing, in

accordance with an embodiment of the present disclosure.

At a step 202, a given data frame/view/channel of the input data (D1) is read to

determine a most optimal size for data blocks or data packets, as described earlier.

10

15

20

25

30

-33-

In accordance with the step 202, the given data frame/view/channel is split into data
blocks or data packets as per the most optimal size for the data blocks or data

packets.

At a step 204, the data blocks or data packets are read to conduct a search for their

corresponding reference data blocks or data packets.

Next, at a step 206, for a given data block or data packet in the given data
frame/view/channel, it is determined whether or not the given data block or data

packet is a duplicate of a reference data block or data packet.

If, at the step 206, it is determined that the given data block or data packet is not a
duplicate, a step 208 is performed. At the step 208, a “no duplicate” reference symbol
is written for the given data block or data packet. In one example, the “no duplicate”
reference symbol is defined as a reference symbol ‘O’. Additionally, all data values of

the given data block or data packet are encoded into the encoded data (E2).

If, at the step 206, it is determined that the given data block or data packet is a
duplicate of a reference data block or data packet, a step 210 is performed. At the
step 210, it is determined whether the given data block or data packet is a full
duplicate or a partial duplicate of the reference data block or data packet. When the
lossy mode of operation is used, the step 210 is performed as per a quality level set

for the lossy mode of operation.

If, at the step 210, it is determined that the given data block or data packet is a partial
duplicate, a step 212 is performed. At the step 212, a reference symbol indicating the
reference data block or data packet is written for the given data block or data packet.
The reference symbol is employed as a pointer indicating a position of the reference
data block or data packet relative to the given data block or data packet. In one
example, the reference symbol is selected from the reference symbols ‘1’ to ‘N’,
when there are ‘N’ different reference data blocks or data packets. Additionally, data
values of changed data elements of the given data block or data packet and their

associated mask bits are encoded into the encoded data (E2).

10

15

20

25

30

-34 -

If, at the step 210, it is determined that the given data block or data packet is a full
duplicate, a step 214 is performed. At the step 214, a reference symbol indicating the
reference data block or data packet is written for the given data block or data packet.
In one example, the reference symbol is selected from the reference symbols ‘“1+N’
to ‘N+N’, when there are ‘N’ different reference data blocks or data packets. In
another example, a one-bit symbol indicating a full duplicate is written in addition to

the reference symbol.

A step 216 follows the steps 208, 212 and 214. At the step 216, it is determined
whether or not a next data block or data packet exists in the given data
frame/view/channel. If it is determined that a next data block or data packet exists,
the encoding processing restarts at the step 204. Otherwise, if it is determined that
no next data block or data packet exists in the given data frame/view/channel, a step

218 is performed.

At the step 218, it is determined whether or not a next data frame/view/channel exists
in the input data (D1). If it is determined that a next data frame/view/channel exists,
the encoding processing restarts at the step 202. Otherwise, if it is determined that
no next data framel/view/channel exists in the input data (D1), the encoding

processing stops.

Moreover, an amount of background memory allocated for the encoding processing
is only as large as an amount of data elements in a current data block or data packet
multiplied with the number of possible references (namely block or packet accurate
reference indexing) or summed with the number of possible references minus one
(namely data value accurate reference indexing). In minimum, it is a memory of one
data block or packet. Moreover, a result of the encoding processing, namely, the
encoded data (E2), can be written or transmitted directly into an original memory.
This means that no separate transfer memories are required. Therefore, the method
is capable of functioning as an in-place operation, and is highly cost-effective. The
method, for example, can be used in inexpensive consumer electronic media
products, such as smart phones, MP3 players, tablet computers, televisions, audio

high-fidelity (“hifi") equipments, e-books and similar.

10

15

20

25

30

-35-

The steps 202 to 218 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the
claims herein. For example, in an alternative implementation where separate
reference symbols are not used for fully duplicate data blocks or data packets, the
steps 210 and 214 are removed. Now, if, at the step 206, it is determined that the
given data block or data packet is a duplicate of a reference data block or data

packet, the step 212 is performed instead of the step 210.

Embodiments of the present disclosure provide a computer program product
comprising a non-transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising
processing hardware to execute the method as described in conjunction with FIGs. 2
and 3A-B. The computer-readable instructions are optionally downloadable from a
software application store, for example, from an “App store” to the computerized

device.

FIG. 4 is an illustration of steps of a method of decoding encoded data (E2) to
generate corresponding decoded data (D3), in accordance with an embodiment of
the present disclosure. The method is depicted as a collection of steps in a logical
flow diagram, which represents a sequence of steps that can be implemented in

hardware, software, or a combination thereof.

At a step 302, the encoded data (E2) is entropy-decoded to provide a plurality of data

streams. As described earlier, the plurality of data streams include one or more of:

() a first data stream that includes data values of at least one reference data
block and/or data packet and data values of changed data elements of
subsequent data blocks;

(i) a second data stream that includes a plurality of mask bits; and/or

(i) athird data stream that includes at least one reference symbol.

10

15

20

25

30

-36 -

At a step 304, unchanged and changed data blocks are decoded from the plurality of
data streams. In accordance with the step 304, the at least one reference symbol, the
plurality of mask bits and the data values of the changed data elements are decoded
to generate data for at least partial reoccurrences of data blocks or data packets, and
to generate data for changed data elements of partial reoccurrences of data blocks or

data packets.

A decoding processing of the step 304 has been described in conjunction with FIGs.
5A and 5B.

Next, at a step 306, the data generated for the at least partial reoccurrences of data
blocks or data packets and the data generated for the changed data elements of the
partial reoccurrences of data blocks or data packets are assembled to generate the
decoded data (D3).

The steps 302 to 306 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

FIGs. 5A and 5B collectively are an illustration of steps of the decoding processing, in

accordance with an embodiment of the present disclosure.

At a step 402, a given reference symbol is read from the third data stream provided
in the encoded data (E2).

At a step 404, it is determined whether or not the given reference symbol is a “no
duplicate” reference symbol. In other words, it is determined whether or not the given

reference symbol corresponds to a non-duplicate data block or data packet.

If, at the step 404, it is determined that the given reference symbol is a “no duplicate”
reference symbol, a step 406 is performed. At the step 406, all data values of the
non-duplicate data block or data packet are decoded to generate data for the non-

duplicate data block or data packet.

10

15

20

25

30

-37 -

If, at the step 404, it is determined that the given reference symbol is not a “no
duplicate” reference symbol, a step 408 is performed. At the step 408, it is
determined whether or not the given reference symbol is a “full duplicate” reference
symbol. In other words, it is determined whether or not the given reference symbol

corresponds to a fully duplicate data block or data packet.

If, at the step 408, it is determined that the given reference symbol is not a “full
duplicate” reference symbol, a step 410 is performed. At the step 410, mask bits
associated with data elements of a partially duplicate data block or data packet are
checked to decode data values of changed data elements of the partially duplicate
data block or data packet. Additionally, data values of unchanged elements are taken
from a reference data block or data packet to which the given reference symbol
points. In accordance with the step 410, the data values of the unchanged elements
are combined with the data values of the changed data elements to generate data for

the partially duplicate data block or data packet.

If, at the step 408, it is determined that the given reference symbol is a “full duplicate”
reference symbol, a step 412 is performed. At the step 412, data values of
unchanged elements are taken from the reference data block to which the given
reference symbol points. The data values of the unchanged elements are set to

generate data for a fully duplicate data block or data packet.

A step 414 follows the steps 406, 410 and 412. At the step 414, it is determined
whether or not a next reference symbol exists in the third data stream. If it is
determined that a next reference symbol exists, the decoding processing restarts at
the step 402.

Otherwise, if it is determined that no next reference symbol exists, a step 416 is
performed. At the step 416, the data generated for the data blocks or data packets at
the steps 406, 410 and 412 is assembled to generate the decoded data (D3).

It will be appreciated that it is possible that a channel, a view or a frame is updated
separately whenever decoding such a portion of the data is completed, irrespective

of whether or not all data is completed.

10

15

20

25

-38 -

The steps 402 to 416 are only illustrative and other alternatives can also be provided
where one or more steps are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing from the scope of the

claims herein.

Embodiments of the present disclosure provide a computer program product
comprising a non-transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising
processing hardware to execute the method as described in conjunction with FIGs. 4
and 5A-B. The computer-readable instructions are optionally downloadable from a
software application store, for example, from an “App store” to the computerized

device.

Modifications to embodiments of the invention described in the foregoing are possible
without departing from the scope of the invention as defined by the accompanying

” 143 ” 11 7 {3

claims. Expressions such as “including”, “comprising”, “incorporating”, “consisting of”,
“have”, “is” used to describe and claim the present invention are intended to be
construed in a non-exclusive manner, namely allowing for items, components or
elements not explicitly described also to be present. Reference to the singular is also
to be construed to relate to the plural. Numerals included within parentheses in the
accompanying claims are intended to assist understanding of the claims and should

not be construed in any way to limit subject matter claimed by these claims.

-39-

APPENDIX

[1]

Entropy (information theory) - Wikipedia, the
free encyclopedia (accessed September 27,
2013). URL:

hito:flen wikipedia. org/wikidk

ntropy %e28information theo

[2]

Shannon, Claude E. (1948) (accessed
November 28, 2012) A Mathematical Theory of

Communication. URL:

ntipom beil-
labs. com/omd/msiwhal/shann

onday/shannont 848 odf

(3]

Lossless compression - Wikipedia, the free
encyclopedia (accessed September 27, 2013).
URL:

hitp:Hen wikipedia orgfwiki/L

05si88s compression

[4] | Lossy compression - Wikipedia, the free hiipfen wikipedia org/wikiiL
encyclopedia (accessed September 27, 2013). O3By _compression
URL:

[5] | Data deduplication - Wikipedia, the free hitpHen wikipedia org/wiki'D
encyclopedia (accessed September 27, 2013). ata _deduplication
URL:

[6] | Hypertext Transfer Protocol -- HTTP/1.1 hin e wa org/Protocols/

(accessed September 27, 2013). URL:

rfe2616/fe2816 hmli

[7]

Real-Time Messaging Protocol (RTMP)
specification | Adobe Developer Connection
(accessed September 27, 2013). URL:

Mo fAwww adobe comidevn

etfrimp himi

[8]

Windows Azure: Microsoft's Cloud Platform |
Cloud Hosting | Cloud Services (accessed
September 27, 2013). URL:

hito Avww windowsazure.co

m/en-us/

(6l

Moore's law - Wikipedia, the free encyclopedia
(accessed September 27, 2013). URL:

hitn fen wikipadia, orafwiki/M

oore%e7s law

10

15

20

25

30

- 40 -

CLAIMS

We claim:

1. An encoder for encoding input data (D1) to generate corresponding encoded
data (E2), wherein the encoder includes processing hardware for processing the
input data (D1), characterized in that:

(a) the processing hardware is operable to determine at least partial
reoccurrences of data blocks or data packets within the input data (D1);

(b) the processing hardware is operable to employ at least one reference symbol
to relate reoccurrences of mutually similar data blocks or data packets within
the input data (D1);

() the processing hardware is operable to employ a plurality of mask bits to
indicate changed and unchanged data elements of partial reoccurrences of
data blocks or data packets within the input data (D1); and

(d) the processing hardware is operable to encode the at least one reference
symbol, the plurality of mask bits and data values of changed data elements
into the encoded data (E2).

2. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to represent one or more unchanged data elements of a given
data block or data packet by using one or more values indicative of no change,

wherein the one or more values are different to those present in the input data (D1).

3. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to employ one or more pointers for indicating one or more at
least partial reoccurrences of data blocks or data packets relative to a corresponding

reference data block or data packet.

4. The encoder as claimed in claim 3, characterized in that the one or more

pointers are one or more relative pointers.

10

15

20

25

30

-41 -

5. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to encode the at least one reference symbol, the plurality of
mask bits and the data values of the changed data elements into a plurality of data

streams to provide the encoded data (E2).

6. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to encode the input data (D1) provided as at least one of: one-
dimensional data, multi-dimensional data, audio data, image data, video data, sensor

data, text data, binary data, medical data.

7. The encoder as claimed in claim 1, characterized in that the encoder includes
an additional encoding unit for encoding at least a portion of the at least one
reference symbol, the plurality of mask bits and the data values of the changed data
elements into the encoded data (E2), wherein the additional encoding unit is
operable to employ at least one of: entropy modifying encoding, delta encoding,
ODelta encoding, range encoding, Run Length Encoding (RLE), Split RLE (SRLE),

interpolation encoding.

8. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to determine a most optimal size for the data blocks or data
packets when processing the input data (D1), and to provide, within the encoded
data (E2), information indicative of the most optimal size for the data blocks or data

packets.

9. A method of encoding input data (D1) to generate corresponding encoded

data (E2), wherein the method includes processing the input data (D1), characterized

in that the method includes:

(a) determining at least partial reoccurrences of data blocks or data packets within
the input data (D1);

(b) employing at least one reference symbol to relate reoccurrences of mutually
similar data blocks or data packets within the input data (D1);

() employing a plurality of mask bits to indicate changed and unchanged data
elements of partial reoccurrences of data blocks or data packets within the
input data (D1); and

10

15

20

25

30

- 42 -

(d) encoding the at least one reference symbol, the plurality of mask bits and data

values of changed data elements into the encoded data (E2).

10. The method as claimed in claim 9, characterized in that the method includes
representing one or more unchanged data elements of a given data block or data
packet by using one or more values indicative of no change, wherein the one or more

values are different to those present in the input data (D1).

11. The method as claimed in claim 9, characterized in that the method includes
employing one or more pointers for indicating one or more at least partial
reoccurrences of data blocks or data packets relative to a corresponding reference

data block or data packet.

12. The method as claimed in claim 11, characterized in that the one or more

pointers are one or more relative pointers.

13. The method as claimed in claim 9, characterized in that the method includes
encoding the at least one reference symbol, the plurality of mask bits and the data
values of the changed data elements into a plurality of data streams to provide the
encoded data (E2).

14. The method as claimed in claim 9, characterized in that the method includes
encoding the input data (D1) provided as at least one of. one-dimensional data, multi-
dimensional data, audio data, image data, video data, sensor data, text data, binary

data, medical data.

15. The method as claimed in claim 9, characterized in that the method includes:

(e) employing an additional encoding unit for encoding at least a portion of the at
least one reference symbol, the plurality of mask bits and the data values of
the changed data elements into the encoded data (E2); and

(f arranging for the additional encoding unit to employ at least one of: entropy
modifying encoding, delta encoding, ODelta encoding, range encoding, Run
Length Encoding (RLE), Split RLE (SRLE), interpolation encoding.

10

15

20

25

30

- 43 -

16. The method as claimed in claim 9, characterized in that the method includes:

(g) determining a most optimal size for the data blocks or data packets when
processing the input data (D1); and

(h) providing, within the encoded data (E2), information indicative of the most

optimal size for the data blocks or data packets.

17. A decoder for decoding encoded data (E2) to generate corresponding
decoded data (D3), wherein the decoder includes processing hardware for
processing the encoded data (E2), characterized in that:

(a) the processing hardware is operable to decode the encoded data (E2) to
identify at least one reference symbol, a plurality of mask bits and data values
of changed data elements;

(b) the processing hardware is operable to employ the at least one reference
symbol to generate data for at least partial reoccurrences of data blocks or
data packets within the encoded data (E2);

() the processing hardware is operable to employ the plurality of mask bits to
generate data for changed data elements of partial reoccurrences of data
blocks or data packets within the encoded data (E2); and

(d) the processing hardware is operable to assemble the data generated for the at
least partial reoccurrences of data blocks or data packets and the data
generated for the changed data elements of the partial reoccurrences of data

blocks or data packets, to generate corresponding decoded data (D3).

18. The decoder as claimed in claim 17, characterized in that the processing
hardware is operable to decode one or more unchanged data elements of a given
data block or data packet from one or more values indicative of no change, wherein

the one or more values are different to those present in the decoded data (D3).

19. The decoder as claimed in claim 17, characterized in that the processing
hardware is operable to decode the encoded data (E2) to identify one or more
pointers indicating one or more at least partial reoccurrences of data blocks or data

packets relative to a corresponding reference data packet or data block.

10

15

20

25

30

- 44 -

20. The decoder as claimed in claim 19, characterized in that the one or more

pointers are one or more relative pointers.

21. The decoder as claimed in claim 17, characterized in that the processing
hardware is operable to decode the at least one reference symbol, the plurality of
mask bits and the data values of the changed data elements from a plurality of data

streams provided within the encoded data (E2).

22. The decoder as claimed in claim 17, characterized in that the decoded data
(D3) is provided as at least one of. one-dimensional data, multi-dimensional data,

audio data, image data, video data, sensor data, text data, binary data, medical data.

23. The decoder as claimed in claim 17, characterized in that the decoder includes
an additional decoding unit for decoding at least a portion of the at least one
reference symbol, the plurality of mask bits and the data values of the changed data
elements from the encoded data (E2), wherein the additional decoding unit is
operable to employ at least one of: entropy modifying decoding, delta decoding,
ODelta decoding, range decoding, run length decoding, split run length decoding,

interpolation decoding.

24. The decoder as claimed in claim 17, characterized in that the processing
hardware is operable to receive, within the encoded data (E2), information indicative

of a size of the data blocks or data packets.

25. A method of decoding encoded data (E2) to generate corresponding decoded

data (D3), wherein the method includes processing the encoded data (E2),

characterized in that the method includes:

(a) decoding the encoded data (E2) to identify at least one reference symbol, a
plurality of mask bits and data values of changed data elements;

(b) employing the at least one reference symbol to generate data for at least
partial reoccurrences of data blocks or data packets within the encoded data
(E2);

10

15

20

25

30

- 45-

() employing the plurality of mask bits to generate data for changed data
elements of partial reoccurrences of data blocks or data packets within the
encoded data (E2); and

(d) assembling the data generated for the at least partial reoccurrences of data
blocks or data packets and the data generated for the changed data elements
of the partial reoccurrences of data blocks or data packets, to generate

corresponding decoded data (D3).

26. The method as claimed in claim 25, characterized in that the method includes
decoding one or more unchanged data elements of a given data block or data packet
from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

27. The method as claimed in claim 25, characterized in that the method includes
decoding the encoded data (E2) to identify one or more pointers indicating one or
more at least partial reoccurrences of data blocks or data packets relative to a

corresponding reference data packet or data block.

28. The method as claimed in claim 27, characterized in that the one or more

pointers are one or more relative pointers.

29. The method as claimed in claim 25, characterized in that the method includes
decoding the at least one reference symbol, the plurality of mask bits and the data
values of the changed data elements from a plurality of data streams provided within
the encoded data (E2).

30. The method as claimed in claim 25, characterized in that the decoded data
(D3) is provided as at least one of. one-dimensional data, multi-dimensional data,

audio data, image data, video data, sensor data, text data, binary data.

31. The method as claimed in claim 25, characterized in that the method includes:
(e) employing an additional decoding unit for decoding at least a portion of the at
least one reference symbol, the plurality of mask bits and the data values of

the changed data elements from the encoded data (E2); and

10

15

- 46 -

(f) arranging for the additional decoding unit to employ at least one of: entropy
modifying decoding, delta decoding, ODelta decoding, range decoding, run

length decoding, split run length decoding, interpolation decoding.

32. The method as claimed in claim 25, characterized in that the method includes
receiving, within the encoded data (E2), information indicative of a size of the data

blocks or data packets.

33. A computer program product comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method as claimed in claim 9 or claim
25.

34. A codec including at least one encoder as claimed in claim 1 for encoding
input data (D1) to generate corresponding encoded data (E2), and at least one
decoder as claimed in claim 17 for decoding the encoded data (E2) to generate

corresponding decoded data (D3).

47

Amendments to the Claims have been filed as follows

AMENDED CLAIMS !

We claim:

1. An encoder for encoding input data (D1) to generate corresponding encoded
data (E2), characterized in that the encoder includes data processing hardware
which is operable:

(a) to determine at least partial reoccurrences of data blocks or data packets
within the input data (D1), wherein the data blocks or data packets include a
plurality of bytes;

(b) to employ at least one reference symbol to relate reoccurrences of mutually
similar data blocks or data packets within the input data (D1), and/or to
indicate whether or not there are reoccurrences of mutually similar data blocks
or data packets within the input data (D1);

(c) to employ a plurality of change symbols to indicate changed and unchanged
data elements of partial reoccurrences of data blocks or data packets within
the input data (D1) and a change of data values of changed data elements;
and

(d) to encode the at least one reference symbol, and the plurality of change

symbols into the encoded data (E2).

2. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to represent one or more unchanged data elements of a given
data block or data packet by using one or more values indicative of no change,

wherein the one or more values are different to those present in the input data (D1).

3. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to encode the at least one reference symbol, the plurality of
change symbols and the data values of the changed data elements into a plurality of

data streams to provide the encoded data (E2).

4. The encoder as claimed in claim 1, characterized in that the processing

hardware is operable to encode the input data (D1) provided as at least one of. one-

48

dimensional data, multi-dimensional data, audio data, image data, video data, sensor

data, text data, binary data, medical data.

5. The encoder as claimed in claim 1, characterized in that the encoder includes
an additional encoding unit for encoding at least a portion of the at least one
reference symbol, the plurality of change symbols and the data values of the
changed data elements into the encoded data (E2), wherein the additional encoding
unit is operable to employ at least one of. entropy modifying encoding, delta
encoding, ODelta encoding, range encoding, Run Length Encoding (RLE), Split RLE
(SRLE), interpolation encoding.

6. The encoder as claimed in claim 1, characterized in that the processing
hardware is operable to determine a most optimal size for the data blocks or data
packets when processing the input data (D1), and to provide, within the encoded
data (E2), information indicative of the most optimal size for the data blocks or data

packets.

7. A method of encoding input data (D1) to generate corresponding encoded
data (E2), wherein the method includes processing the input data (D1), characterized
in that the method includes:

(@) determining at least partial reoccurrences of data blocks or data packets within
the input data (D1), wherein the data blocks or data packets each include a
plurality of bytes;

(b) employing at least one reference symbol to relate reoccurrences of mutually
similar data blocks or data packets within the input data (D1), and/or to
indicate whether or not there are reoccurrences of mutually similar data blocks
or data packets within the input data (D1);

(c) employing a plurality of change symbols to indicate changed and unchanged
data elements of partial reoccurrences of data blocks or data packets within
the input data (D1) and a change of data values of changed data elements;
and

(d) encoding the at least one reference symbol, and the plurality of change

symbols into the encoded data (E2).

49

8. The method as claimed in claim 7, characterized in that the method includes
representing one or more unchanged data elements of a given data block or data
packet by using one or more values indicative of no change, wherein the one or more

values are different to those present in the input data (D1).

9. The method as claimed in claim 7, characterized in that the method includes
encoding the at least one reference symbol, the plurality of change symbols and the
data values of the changed data elements into a plurality of data streams to provide
the encoded data (E2).

10. The method as claimed in claim 7, characterized in that the method includes
encoding the input data (D1) provided as at least one of. one-dimensional data, multi-
dimensional data, audio data, image data, video data, sensor data, text data, binary

data, medical data.

11. The method as claimed in claim 7, characterized in that the method includes:

(e) employing an additional encoding unit for encoding at least a portion of the at
least one reference symbol, the plurality of change symbols and the data
values of the changed data elements into the encoded data (E2); and

(f) arranging for the additional encoding unit to employ at least one of. entropy
modifying encoding, delta encoding, ODelta encoding, range encoding, Run
Length Encoding (RLE), Split RLE (SRLE), interpolation encoding.

12. The method as claimed in claim 7, characterized in that the method includes:

(9) determining a most optimal size for the data blocks or data packets when
processing the input data (D1); and

(h) providing, within the encoded data (E2), information indicative of the most
optimal size for the data blocks or data packets.

13 A decoder for decoding encoded data (E2) to generate corresponding
decoded data (D3), wherein the decoder includes processing hardware for
processing the encoded data (E2), characterized in that:

(a) the processing hardware is operable to decode the encoded data (E2) to

identify at least one reference symbol, and a plurality of change symbols;

50

(b) the processing hardware is operable to employ the at least one reference
symbol to generate data for at least partial reoccurrences of data blocks or
data packets within the encoded data (E2);

() the processing hardware is operable to employ the plurality of change symbols
to generate data for changed data elements of partial reoccurrences of data
blocks or data packets within the encoded data (E2); and

(d) the processing hardware is operable to assemble the data generated for the at
least partial reoccurrences of data blocks or data packets and the data
generated for the changed data elements of the partial reoccurrences of data

blocks or data packets, to generate corresponding decoded data (D3).

14. The decoder as claimed in claim 13, characterized in that the processing
hardware is operable to decode one or more unchanged data elements of a given
data block or data packet from one or more values indicative of no change, wherein

the one or more values are different to those present in the decoded data (D3).

15. The decoder as claimed in claim 13, characterized in that the processing
hardware is operable to decode the at least one reference symbol, the plurality of
change symbols and the data values of the changed data elements from a plurality of

data streams provided within the encoded data (E2).

16. The decoder as claimed in claim 13, characterized in that the decoded data
(D3) is provided as at least one of. one-dimensional data, multi-dimensional data,

audio data, image data, video data, sensor data, text data, binary data, medical data.

17. The decoder as claimed in claim 13, characterized in that the decoder includes
an additional decoding unit for decoding at least a portion of the at least one
reference symbol, the plurality of mask bits and the data values of the changed data
elements from the encoded data (E2), wherein the additional decoding unit is
operable to employ at least one of. entropy modifying decoding, delta decoding,
ODelta decoding, range decoding, run length decoding, split run length decoding,

interpolation decoding.

51

18. The decoder as claimed in claim 13, characterized in that the processing
hardware is operable to receive, within the encoded data (E2), information indicative

of a size of the data blocks or data packets.

19. A method of decoding encoded data (E2) to generate corresponding decoded
data (D3), wherein the method includes processing the encoded data (E2),
characterized in that the method includes:

(a) decoding the encoded data (E2) to identify at least one reference symbol, and
a plurality of change symbols;

(b) employing the at least one reference symbol to generate data for at least
partial reoccurrences of data blocks or data packets within the encoded data
(E2);

(c) employing the plurality of change symbols to generate data for changed data
elements of partial reoccurrences of data blocks or data packets within the
encoded data (E2); and

(d) assembling the data generated for the at least partial reoccurrences of data
blocks or data packets and the data generated for the changed data elements
of the partial reoccurrences of data blocks or data packets, to generate

corresponding decoded data (D3).

20. The method as claimed in claim 19, characterized in that the method includes
decoding one or more unchanged data elements of a given data block or data packet
from one or more values indicative of no change, wherein the one or more values are

different to those present in the decoded data (D3).

21. The method as claimed in claim 19, characterized in that the method includes
decoding the at least one reference symbol, the plurality of mask bits and the data
values of the changed data elements from a plurality of data streams provided within
the encoded data (E2).

22. The method as claimed in claim 19, characterized in that the decoded data
(D3) is provided as at least one of. one-dimensional data, multi-dimensional data,

audio data, image data, video data, sensor data, text data, binary data.

52

23. The method as claimed in claim 19, characterized in that the method includes:

(e) employing an additional decoding unit for decoding at least a portion of the at
least one reference symbol, the plurality of mask bits and the data values of
the changed data elements from the encoded data (E2); and

(f) arranging for the additional decoding unit to employ at least one of. entropy
modifying decoding, delta decoding, ODelta decoding, range decoding, run

length decoding, split run length decoding, interpolation decoding.

24. The method as claimed in claim 19, characterized in that the method includes
receiving, within the encoded data (E2), information indicative of a size of the data

blocks or data packets.

25. A computer program product comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method as claimed in claim 7 or claim
19.

31. A codec including at least one encoder as claimed in claim 1 for encoding
input data (D1) to generate corresponding encoded data (E2), and at least one
decoder as claimed in claim 13 for decoding the encoded data (E2) to generate

corresponding decoded data (D3).

53

Intellectual
Property
Office

Application No: GB1411531.5 Examiner: Adam Tucker
Claims searched: 1-34 Date of search: 19 December 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

X 1-7,9-15 | US 7643505 B1
& 17-34 | (Colloft) See the whole document and in particular Figures 1A, 1C and
4A-H

A - EP 2359233 Al
(Data-Domain Inc.) See the whole document

A - US 2013/0315307 Al
(Karkkainen et al.) See the whole document

A - US 5434568 A
(Moll) See the whole document

A - US 2010/0115137 Al
(Kim et al.) See e.g. the abstract and paragraphs 4, 7, 22 & 27

A - EP 2256934 Al
(Exagrid Systems Inc.) See the whole document and e.g. paragraphs 12
& 43
Categories:

X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

carlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX -

Worldwide search of patent documents classified in the following areas of the IPC
| GO6F; GO6T; HO3M; HO4L; HO4N \
The following online and other databases have been used in the preparation of this search report

[WPI, EPODOC, INSPEC, TXTE |

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

54

Intellectual
Property
Office
International Classification:
Subclass Subgroup Valid From
HO3M 0007/30 01/01/2006
GO6F 0003/06 01/01/2006
GO6F 0011/14 01/01/2006
GO6F 0017/30 01/01/2006
HO4L 0029/06 01/01/2006
HO4N 0019/00 01/01/2014

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

	Bibliography
	Drawings
	Description
	Claims
	Search-report

