»UK Patent .,GB

11)2576755 (13)B

(45)Date of B Publication 06.01.2021

(54) Title of the Invention: SYStem and method for providing protected data storage in a

data memory

(51) INT CL: GO6F 21/78 (2013.01) GO6F 12/14 (2006.01)

(21) Application No: 1814149.9
(22) Date of Filing: 31.08.2018
(43) Date of A Publication 04.03.2020

(56) Documents Cited:

GB 2136175 A EP 2674891 A1
WO 2007/144388 A1 WO 1997/026736 A1
US 8812875 B1 US 20040032950 A1

US 20020129245 A1

(58) Field of Search:
As for published application 2576755 A viz:
INT CL GO6F
Other: EPODOC, WPI, INSPEC, Patent Fulitext,
XPESP, XPIEE, XPIPCOM, XPI3E, XPMISC, XPLNCS,
XPRD, XPSPRNG, TDB
updated as appropriate

Additional Fields
INT CL HO4L
Other: None

(72) Inventor(s):

Tuomas Mikael Kdrkkdinen

(73) Proprietor(s):

Gurulogic Microsystems Oy
Linnankatu 34, Turku FI-20100, Finland

(74) Agent and/or Address for Service:

Basck Ltd
WeWork, 50-60 Station Road, Cambridge,
Cambridgeshire, CB1 2JH, United Kingdom

g 6G/9/G¢ 99

1/3

D1

ENCODER 104

EN

MEMORY 1

o
N

EN

DECODER 106

D1

FIG. 1A

100

2/3

|U
hr

ENCODER 104

EN

E

DECODER 106

FIG. 1B

MEMORY 102 |¢—

OBFUSC

10

(00]

100

3/3

THREAD 1 THREAD 2

DECRYPT «r g
READ/ f THREAD 3
WRITE

NP

ENCRYPT I

FIG. 2

0109 20

10

15

20

25

SYSTEM AND METHOD FOR PROVIDING PROTECTED DATA STORAGE
IN DATA MEMORY

TECHNICAL FIELD

The present disclosure relates to systems for providing protected data storage
in data memories of computing devices. Moreover, the present disclosure is
concerned with methods for providing protected data storage in data
memories of computing devices. Furthermore, the present disclosure
concerns computer program products comprising non-transitory computer-
readable storage media having computer-readable instructions stored
thereon, the computer-readable instructions being executable by a
computerized device comprising processing hardware to execute the

aforesaid methods.

BACKGROUND

Contemporary computer-related products (for example, such as processing
hardware, operating systems and so forth) beneficially conform to data
security standards. As an example, for a given processing hardware, it is
desired that the given processing hardware has an isolated or trusted
environment, where all sensitive data can be processed securely. Providing
such an isolated or trusted environment often increases a cost of

manufacturing a given computer-related product.

Moreover, it is contemporarily expected that, in many situations, service
providers (providing various services to their consumers) execute their duty
of care in respect of data right protection of the consumers, and fulfil relevant

legal requirements.

Conventionally, hardware vendors have provided a Trusted Execution
Environment (TEE), which guarantees "in theory" protection for execution
code and sensitive data inside isolated hardware. Moreover, contemporary
operating systems (0OS) employ a memory protection technique, which

prevents a process from accessing a portion of memory that has not been

0109 20

10

15

20

25

30

allocated to it. Furthermore, some conventional techniques encrypt the data
prior to storage in the memory. Such data encryption utilizes a fixed

encryption key that is selected by a user or by a software application.

However, these conventional techniques for protecting sensitive data suffer
from several disadvantages. Firstly, runtime memory is isolated from
protected memory by hardware or an operating system (0S). Secondly, the
protected memory is static during non-modified memory usage. Thirdly, one
cannot trust protection techniques provided by device manufacturers (for
example, such as TEE), as security implementations of such protection
techniques are not transparent to their users. Fourthly, the conventional
techniques are vulnerable to memory attacks, for example, such as
"Meltdown" and "Spectre", which are critical vulnerabilities in modern
processing hardware. Fifthly, vulnerabilities existing in the modern processing
hardware cannot be fixed easily, namely without changing their overall
design. Sixthly, memory operations employed at the OS level (to safeguard
against the aforementioned vulnerabilities) reduce computing performance
severely. Seventhly, one cannot trust protection techniques provided by the
operating systems (0OS), as their security implementations are typically based
on information systems that are comprehensive and intact only in theory;
notably, new vulnerabilities are being found from interfaces of such

information systems every now and then.

In light of the foregoing, there arises a contemporary need for an improved
system for providing protected data storage in a data memory of a computing
device, such that the protected data storage is not vulnerable to memory

attacks.

SUMMARY

The present disclosure seeks to provide an improved system for providing

protected data storage in a data memory of a computing device.

Moreover, the present disclosure seeks to provide an improved method for

providing protected data storage in a data memory of a computing device.

0109 20

10

15

20

25

30

A further aim of the present disclosure is to at least partially overcome at

least some of the problems of the prior art, as described in the foregoing.

In a first aspect, embodiments of the present disclosure provide a system
that, when in operation, provides protected data storage in a data memory

of a computing device, characterized in that the system comprises:

- an encoder executing on a processing hardware of the computing
device, wherein the encoder, when in operation:
- generates encryption information according to an encryption
algorithm,
- encrypts unencrypted data (D1) wusing the encryption
information to generate encrypted data (E2),
- stores the encrypted data (E2) in an allocated portion of the data
memory of the computing device; and
- stores the encryption information in the allocated portion of the
data memory or an allocated portion of an additional data memory of

the computing device; and

- a decoder executing on the processing hardware of the computing
device, wherein the decoder, when in operation:
- accesses the encrypted data (E2) from the allocated portion of
the data memory and the encryption information from the allocated
portion of the data memory or the allocated portion of the additional
data memory, and
- decrypts the encrypted data (E2) using the encryption

information to re-generate the unencrypted data (D1);

wherein the encoder, when in operation:
- generates new encryption information according to the
encryption algorithm,
- re-encrypts the unencrypted data (D1) using the new encryption
information to generate new encrypted data (E3),
- replaces the encrypted data (E2) with the new encrypted data

(E3) in the allocated portion of the data memory, and

0109 20

10

15

20

25

30

- replaces the encryption information with the new encryption
information in the allocated portion of the data memory or the allocated

portion of the additional data memory,

wherein the unencrypted data (D1) is re-encrypted using newer encryption
information to generate newer encrypted data (EN+1) each time the
unencrypted data (D1) is read from the allocated portion of the data memory
or the unencrypted data (D1) is to be written to the allocated portion of the
data memory, wherein previous encrypted data (EN) is to be replaced with
the newer encrypted data (EN+1) in the allocated portion of the data

memory,

further wherein the encoder and the decoder are integrated, such that the
decoder and the encoder, when in operation, decrypt the previous encrypted
data (EN) into the unencrypted data (D1) and re-encrypt the unencrypted
data (D1) into the newer encrypted data (EN+1), respectively, in a single
thread of execution, and wherein the encoder and the decoder are
implemented by way of a low-level code in an inline configuration, such that
the processing hardware of the computing device does not interrupt a cycle

of decryption and encryption.

Embodiments of the present disclosure are of advantage in that the system
provides more robust protected data storage against different kinds of
memory attacks, and is not prone to vulnerabilities of operating systems,

target platforms and hardware.

In a second aspect, embodiments of the present disclosure provide a method
for providing protected data storage in a data memory of a computing device,
the method being implemented by a system comprising an encoder and a

decoder, characterized in that the method comprises:

- generating, via the encoder, encryption information according to an
encryption algorithm;
- encrypting, via the encoder, unencrypted data (D1) using the

encryption information to generate encrypted data (E2);

0109 20

10

15

20

25

30

- storing the encrypted data (E2) in an allocated portion of the data
memory of the computing device;

- storing the encryption information in the allocated portion of the data
memory or an allocated portion of an additional data memory of the
computing device

- accessing, via the decoder, the encrypted data (E2) from the allocated
portion of the data memory and the encryption information from the allocated
portion of the data memory or the allocated portion of the additional data
memory;

- decrypting the encrypted data (E2) using the encryption information to
re-generate the unencrypted data (D1);

- generating, via the encoder, new encryption information according to
the encryption algorithm; and

- re-encrypting, via the encoder, the unencrypted data (D1) using the
new encryption information to generate new encrypted data (E3);

- replacing the encrypted data (E2) with the new encrypted data (E3) in
the allocated portion of the data memory, and replacing the encryption
information with the new encryption information in the allocated portion of

the data memory or the allocated portion of the additional data memory;

wherein the steps of generating newer encryption information, re-encrypting
the unencrypted data (D1) to generate newer encrypted data (EN+1) and
replacing previous encrypted data (EN) with the newer encrypted data
(EN+ 1) are repeated each time the unencrypted data (D1) is read from the
allocated portion of the data memory or the unencrypted data (D1) is to be

written to the allocated portion of the data memory,

further wherein the encoder and the decoder are integrated, such that the
steps of decrypting the previous encrypted data (EN) into the unencrypted
data (D1) and re-encrypting the unencrypted data (D1) into the newer
encrypted data (EN+1) are performed in a single thread of execution, and
wherein the encoder (104) and the decoder (106) are implemented by way
of a low-level code in an inline configuration, such that a cycle of decryption

and encryption is not interrupted.

0109 20

10

15

20

25

In a third aspect, embodiments of the present disclosure provide a computer
program product comprising a non-transitory computer-readable storage
medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method pursuant to the

aforementioned second aspect.

Additional aspects, advantages, features and objects of the present disclosure
would be made apparent from the drawings and the detailed description of
the illustrative embodiments construed in conjunction with the appended

claims that follow.

It will be appreciated that features of the present disclosure are susceptible
to being combined in various combinations without departing from the scope

of the present disclosure as defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed description of
illustrative embodiments, is better understood when read in conjunction with
the appended drawings. For the purpose of illustrating the present disclosure,
exemplary constructions of the disclosure are shown in the drawings.
However, the present disclosure is not limited to specific methods and
apparatus disclosed herein. Moreover, those in the art will understand that
the drawings are not to scale. Wherever possible, like elements have been

indicated by identical numbers.

Embodiments of the present disclosure will now be described, by way of

example only, with reference to the following diagrams wherein:

FIGs. 1A and 1B are schematic illustrations of a system for providing
protected data storage in a data memory of a computing device, in
accordance with different embodiments of the present disclosure;

and

0109 20

10

15

20

25

FIG. 2 is a schematic illustration of how a cycle of decryption and encryption
is performed in a single thread of execution, pursuant to

embodiments of the present disclosure.

In the accompanying diagrams, an underlined number is employed to
represent an item over which the underlined number is positioned or an item
to which the underlined number is adjacent. When a number is non-
underlined and accompanied by an associated arrow, the non-underlined

number is used to identify a general item at which the arrow is pointing.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, illustrative embodiments of the present
disclosure and ways in which they can be implemented are elucidated.
Although some modes of carrying out the present disclosure are described,
those skilled in the art would recognize that other embodiments for carrying

out or practising the present disclosure are also possible.

In a first aspect, embodiments of the present disclosure provide a system
that, when in operation, provides protected data storage in a data memory

of a computing device, characterized in that the system comprises:

- an encoder executing on a processing hardware of the computing
device, wherein the encoder, when in operation:
- generates encryption information according to an encryption
algorithm,
- encrypts unencrypted data (D1) wusing the encryption
information to generate encrypted data (E2),
- stores the encrypted data (E2) in an allocated portion of the data
memory of the computing device; and
- stores the encryption information in the allocated portion of the
data memory or an allocated portion of an additional data memory of

the computing device; and

0109 20

10

15

20

25

30

- a decoder executing on the processing hardware of the computing
device, wherein the decoder, when in operation:
- accesses the encrypted data (E2) from the allocated portion of
the data memory and the encryption information from the allocated
portion of the data memory or the allocated portion of the additional
data memory, and
- decrypts the encrypted data (E2) using the encryption

information to re-generate the unencrypted data (D1);

wherein the encoder, when in operation:
- generates new encryption information according to the
encryption algorithm,
- re-encrypts the unencrypted data (D1) using the new encryption
information to generate new encrypted data (E3),
- replaces the encrypted data (E2) with the new encrypted data
(E3) in the allocated portion of the data memory, and
- replaces the encryption information with the new encryption
information in the allocated portion of the data memory or the allocated

portion of the additional data memory,

wherein the unencrypted data (D1) is re-encrypted using newer encryption
information to generate newer encrypted data (EN+1) each time the
unencrypted data (D1) is read from the allocated portion of the data memory
or the unencrypted data (D1) is to be written to the allocated portion of the
data memory, wherein previous encrypted data (EN) is to be replaced with
the newer encrypted data (EN+1) in the allocated portion of the data

memory,

further wherein the encoder and the decoder are integrated, such that the
decoder and the encoder, when in operation, decrypt the previous encrypted
data (EN) into the unencrypted data (D1) and re-encrypt the unencrypted
data (D1) into the newer encrypted data (EN+1), respectively, in a single
thread of execution, and wherein the encoder and the decoder are

implemented by way of a low-level code in an inline configuration, such that

0109 20

10

15

20

25

30

the processing hardware of the computing device does not interrupt a cycle

of decryption and encryption.

Throughout the present disclosure, the term "thread of execution" generally
refers to a smallest sequence of computer-readable instructions that can be
executed independently by a scheduler. A thread of execution is a component
of a process; herein, the term "process" generally refers to an instance of a
computer program that is being executed, namely during a runtime execution
of the computer program. While a computer program is merely a passive
collection of computer-readable instructions, a process is an actual execution
of those instructions. A process may comprise a single thread of execution or
multiple threads of execution that execute computer-readable instructions

concurrently.

It will be appreciated that prior to encrypting the unencrypted data (D1) for
the first time or encrypting the new data (D1), the data is copied (namely,
read) to the data memory in an unencrypted form. Immediately after copying
the unencrypted data (D1) or the new data (D1) to the data memory,
encryption is performed using dynamically-generated encryption information
to generate the encrypted data (E2, E3, EN or EN+1) for storage in the
allocated portion of the data memory. The encrypted data (E2, E3, EN or
EN+ 1) is then stored in the allocated portion of the data memory pursuant to

embodiments of the present disclosure.

Each time the unencrypted data (D1) is required to be read from the allocated
portion of the data memory or the new data (D1) is required to be written to
the allocated portion of the data memory, the decoder, when in operation,
decrypts the previous encrypted data (EN) into the unencrypted data (D1).
After the aforesaid read or write operation, the encoder, when in operation,
re-encrypts the unencrypted data (D1) into the newer encrypted data
(EN+ 1). As this cycle of decryption and encryption is performed in the single
thread of execution pursuant to embodiments of the present disclosure, the
encoder and the decoder operate without any interruption (namely, from a
beginning to an end) in the single thread of execution. As a result, the data

is never stored in the unencrypted form in the data memory. For illustration

0109 20

10

15

20

25

30

-10 -

purposes only, an example cycle of decryption and encryption has been

elucidated in conjunction with FIG. 2.

The aforementioned system provides a solution that at least partially
overcomes at least some of the problems of the prior art, and that is
independent of Operating Systems (0OS's), target platforms and hardware.
Moreover, the system pursuant to embodiments of the present disclosure

does not require passwords (or similar) for protection.

Moreover, the aforementioned system, when in operation, functions
independently in the single thread of execution, wherein a program utilizing
the system is executed in a process; the single thread of execution being a
component of said process. In operation, the system does not need to utilize
functionalities outside the single thread of execution. As a result, user's

sensitive data is protected against interception by malicious third parties.

Pursuant to embodiments of the present disclosure, the aforementioned
system is suitable for providing protected storage of sensitive data during an
execution of a program (for example, a runtime execution of a software
application). The encoder of the system, when in operation, re-encrypts the
sensitive data using newer encryption information each time the sensitive
data is read from or is to be written to the allocated portion of the data
memory. The encoder of the system, when in operation, generates the newer
encryption information dynamically. Such a dynamic re-encryption prevents
unauthorized access to the sensitive data in an efficient manner. It will be
appreciated that as the encoder and the decoder operate in the single thread
of execution, accessing the sensitive data or tracking any changes in the
sensitive data occurring inside the processing hardware is not possible even
for a hardware vendor itself. Thus, the aforementioned system is capable of
providing various services and software applications executing on the
computing device with an extended protection against malwares, cyber
spying, and the like. In this regard, the system is capable of protecting user's
sensitive data during the runtime execution even between different hardware

and software interfaces.

0109 20

10

15

20

25

30

-11 -

Throughout the present disclosure, the term "sensitive data" refers to data
that is required to be protected from unauthorized access to safeguard the
privacy or security of an individual or an organization. Protection of sensitive
data may be required for legal or ethical reasons, for issues pertaining to
personal privacy, or for proprietary considerations. As an example, the
aforementioned system is beneficial to use when creating and handling
passwords and Personal Identification Numbers (PIN's), likewise personal

data.

Throughout the present disclosure, the term "data memory" generally refers
to a memory that is used for temporarily storing variables and intermediate
results used during a runtime execution of one or more programs. The term
"data memory" encompasses both volatile and non-volatile data memories of
the computing device. Some examples of the data memory are a Random-

Access Memory (RAM) and a Central Processing Unit (CPU) register.

According to an embodiment, given encrypted data (E2, E3, EN or EN+ 1) is
exported from a volatile memory (for example, such as a RAM) to a non-
volatile memory (for example, such as a CPU register, a file system, a
database or the like), and is imported back to the volatile memory for runtime

execution, as and when required.

Pursuant to embodiments of the present disclosure, the aforementioned
system is suitable for protecting sensitive variables stored in, for example, a
RAM or a CPU register of the computing device during runtime execution of
various services or software applications. Such protected sensitive variables
are to be used in a manner that is similar to how unprotected variables are
used in conventional techniques. As a result, it is not necessary to make
changes to a logical development syntax and paradigm of a given program

(for example, a software application).

Throughout the present disclosure, the term "variable" generally refers to a
storage location in a given data memory that is identified by a memory
address, wherein the storage location is referred to by a symbolic name, and

contains some known or unknown quantity of information referred to as a

0109 20

10

15

20

25

30

-12 -

"data value". Throughout the present disclosure, the term "protected
variable" refers to a variable whose data value is protected by the aforesaid
dynamic re-encryption (namely, re-encryption using dynamically-generated
encryption information) prior to storage in the data memory, pursuant to
embodiments of the present disclosure. Pursuant to embodiments of the
present disclosure, the protected variable contains the data value in an
encrypted form (hereinafter, referred to as the "encrypted data value®, for
the sake of clarity only). It will be appreciated that storing the data value in
the encrypted form (namely, the encrypted data value) provides protection
against different kinds of memory attacks, which may try to read or modify

the stored data value.

It will be appreciated that a given protected variable is always utilized
(namely, for read or write operations during the runtime execution) in the
unencrypted form (namely, in a form of plaintext). For this purpose, the
aforementioned decoder, when in operation, accesses an encrypted data
value of the given protected variable from the data memory, and decrypts
the encrypted data value using its corresponding encryption information to
generate a decrypted, namely an unencrypted data value. This unencrypted

data value is then utilized during the runtime execution.

However, after this unencrypted data value is utilized, the aforementioned
encoder, when in operation, dynamically generates newer encryption
information and re-encrypts the unencrypted data value of the given
protected variable using the newer encryption information to generate a
newer encrypted data value (namely, for replacing the encrypted data value
stored previously in the data memory). Beneficially, the aforesaid decryption
and re-encryption are performed in the single thread of execution. Next time
when the given protected variable is required to be utilized for read or write
operations, the aforementioned decoder, when in operation, accesses this
newer encrypted data value from the data memory and decrypts the newer
encrypted data value using the newer encryption information to re-generate

the unencrypted data value.

0109 20

10

15

20

25

-13 -

This cycle of decryption and encryption is performed for each read or write
operation in the single thread of execution, until the given protected variable
is no longer required. The cycle of decryption and encryption can be

represented as follows:

Step 1: Encrypt an unencrypted data value (using initial encryption
information) into an encrypted data value for the first time and store the

encrypted data value in the data memory.

Step 2: Access the encrypted data value from the data memory and
decrypt the encrypted data value (using the encryption information) to re-

generate the unencrypted data value.

Step 3: Utilize the unencrypted data value, as required. If a read
operation is performed, the unencrypted data value remains unchanged. If a

write operation is performed, the unencrypted data value changes.

Step 4: Encrypt the unencrypted data value (whether changed or
unchanged) using dynamically-generated encryption information into a new
encrypted data value and replace the previous encrypted data value with the

new encrypted data value in the data memory.

The cycle of the steps 2, 3 and 4 is repeated each time the given protected
variable is required to be utilized, and is performed in the single thread of
execution. The single thread of execution is not allowed to be suspended until
the step 4 is performed (namely, until the unencrypted data value is
encrypted into the new encrypted data value and the previous encrypted data
value is replaced with the new encrypted data value). The aforesaid cycle of

the steps 2, 3 and 4 has been illustrated in conjunction with FIG. 2.

According to an embodiment, the aforementioned encoder and the
aforementioned decoder are susceptible to being implemented by employing
custom-designed digital hardware, for example via use of one or more
Application-Specific Integrated Circuits (ASIC'S), custom-designed integrated

circuits and similar. In such a case, the processing hardware of the computing

0109 20

10

15

20

25

-14 -

device (on which the encoder and the decoder are executed) includes the

custom-designed digital hardware.

Optionally, the system is implemented by employing custom-designed digital
hardware that is arranged to operate with hardware associated with
controlling the data memory of the computing device, such as to provide a

hybrid form of data memory hardware.

According to another embodiment, the aforementioned encoder and the
aforementioned decoder are implemented, at least in part, by way of
encoding instructions and decoding instructions, respectively, in a given
program that, when executed by the processing hardware of the computing
hardware, performs the aforementioned encryption and decryption

operations.

In such a case, the aforementioned system, in operation, eliminates direct
dependency on RAM security solutions, and is not prone to vulnerabilities of
Operating Systems (0OS's), target platforms and hardware (for example, such
as Meltdown and Spectre vulnerabilities, which are critical vulnerabilities in

modern processing hardware).

It will be appreciated that the aforementioned system is susceptible to be
implemented in low cost consumer devices (namely, low cost computing
devices) without compromising an overall data security. In other words, it is
possible to implement the aforementioned system independent of hardware

architecture of the computing device.

Optionally, the processing hardware of the computing device (on which the
encoder and the decoder are executed) includes at least one Reduced
Instruction Set Computing (RISC) processor that is configured to execute the
encoding and decoding instructions as elucidated earlier. Such a RISC
processor is capable of performing relatively simpler concatenated operations
at a very high speed, thereby providing a shorter temporal window of

opportunity for hostile attacks to occur.

0109 20

10

15

20

25

30

-15 -

Examples of the computing device include, but are not limited to, a
smartphone, a Mobile Internet Device (MID), a tablet computer, an Ultra-
Mobile Personal Computer (UMPC), a phablet computer, a Personal Digital
Assistant (PDA), a web pad, a Personal Computer (PC), a handheld PC, a
laptop computer, a desktop computer, a consumer electronics apparatus, a
wireless communication apparatus, a scientific measuring apparatus, a

military communications equipment, and a video-conferencing equipment.

Furthermore, according to an embodiment, the unencrypted data (D1)
comprises unencrypted data values of at least one protected variable that are
to be utilized during a runtime execution of a program. The at least one
protected variable could, for example, comprise one or more sensitive
variables used during the runtime execution of the program. In some
implementations, the at least one protected variable includes a single
protected variable. In other implementations, the at least one protected

variable includes a plurality of protected variables.

Optionally, the allocated portion of the data memory comprises at least one
portion of the data memory that is allocated to the at least one protected

variable.

During the runtime execution of the program, read and/or write operations
may be performed several times on the at least one protected variable
(namely, according to the aforementioned cycle of decryption and
encryption). Each time the data (D1) is read or is to be written, newer
encryption information is generated dynamically and the data (D1) is re-
encrypted using the newer encryption information in the single thread of
execution. It will be appreciated that the data (D1) is re-encrypted until last
encrypted data (EN+ 1) is generated using last encryption information before

the runtime execution of the program is over.

It is essential from a security perspective that the cycle of decryption and
encryption are performed without any interruption. Beneficially, the encoder
and the decoder are implemented in an inline configuration (namely, an

assembler), such that the processing hardware of the computing device (for

0109 20

10

15

20

25

30

-16 -

example, a central processing unit of the computing device) does not pause
(namely, interrupt) an on-going process of the re-encryption of the data (D1).

The inline configuration prevents interception by malicious third parties.

In this regard, the steps of generating the newer encryption information and
re-encrypting the data (D1) using the newer encryption information are
performed at one go without any hardware interruption, so that there is no
time window for interception by malicious third parties. This potentially
prevents unauthorized parties from performing a timing attack during the

runtime execution of the program.

Optionally, in this regard, the program is implemented by way of a low-level
code in the inline configuration, such that the processing hardware of the
computing device does not pause (namely, interrupt) an on-going process of

the re-encryption of the data (D1) until the code is executed completely.

Additionally, optionally, pointers are used for direct memory access to
encrypted data values of the at least one protected variable. This ensures
that the encrypted data values are neither transferred outside nor replicated
during the runtime execution of the program (for example, a software
application). It will be appreciated that the use of the pointers is more secure

as compared to memory copy.

It will also be appreciated that reading and writing the encrypted data (E2,
E3, EN or EN+1) from and to the allocated portion of the data memory
pursuant to embodiments of the present disclosure are performed in a
manner that is similar to reading and writing unencrypted data in
conventional techniques. In other words, reading and writing the encrypted
data values of the at least one protected variable pursuant to embodiments
of the present disclosure is performed in a manner that is similar to reading
and writing unencrypted data values of a variable in the conventional

techniques.

Moreover, optionally, the encoder, when in operation, initializes the

encryption information prior to encrypting the unencrypted data (D1) for the

0109 20

10

15

20

25

-17 -

first time. Optionally, in this regard, the encoder, when in operation,
generates the encryption information initially (namely, only once) from at
least one initialization value. Optionally, the at least one initialization value
comprises at least one default value and/or at least one random value. The
at least one initialization value is stored in its corresponding allocated portion

of the data memory or an additional data memory on a temporary basis.

Optionally, the system further comprises an obfuscation module executing on
the processing hardware of the computing device, wherein the obfuscation
module, when in operation, obfuscates the at least one initialization value
stored in the data memory or the additional data memory prior to releasing
its corresponding allocated portion of the data memory or the additional data
memory. Such obfuscation may, for example, be performed by way of various
types of bit swaps. This ensures that the data memory or the additional data
memory (for example, RAM, CPU register or the like) does not store any data
reference related to the at least one initialization value that was stored during

the memory usage.

Pursuant to embodiments of the present disclosure, the at least one
initialization value is used only internally by the aforementioned encoder for
generating the encryption information, and is restricted, so that it cannot be
accessed or used from outside the aforementioned encoder. In other words,
the at least one initialization value is used only internally in the encryption

algorithm, in order to generate the encryption information for the first time.

Optionally, the obfuscation module, when in operation, obfuscates the last
encrypted data (EN+ 1) stored in the allocated portion of the data memory

prior to releasing the allocated portion of the data memory.

Optionally, in such a case, the obfuscation module, when in operation,
obfuscates the last encryption information stored in the allocated portion of

the data memory prior to releasing the allocated portion of the data memory.

0109 20

10

15

20

25

30

-18 -

According to another embodiment, the additional data memory is different
from the data memory used to store given encrypted data (E2, E3, EN or
EN+1).

Optionally, in such a case, the obfuscation module, when in operation
obfuscates the last encryption information stored in the allocated portion of
the additional data memory prior to releasing the allocated portion of the

additional data memory.

Moreover, optionally, the encoder, when in operation, generates the
encryption information randomly. Optionally, in this regard, the encryption
information is generated using an automated function. More optionally, new
encryption information is generated independent of old encryption
information (namely, previously-used encryption information). This
eliminates any possibility of creation of an intentional or un-intentional

vulnerability by a software developer.

As mentioned earlier, the encryption information is generated according to
the encryption algorithm that is to be used for encrypting the unencrypted
data (D1). It will be appreciated that how the encryption information is

utilized depends on the encryption algorithm.

Optionally, the encryption algorithm employs symmetric encryption.
Optionally, in this regard, the encryption algorithm is a block cipher algorithm
(see https://en.wikipedia.org/wiki/Block_cipher), for example, such as
Advanced Encryption Standard (AES). Alternatively, optionally, the
encryption algorithm is a stream cipher algorithm (see
https://en.wikipedia.org/wiki/Stream_cipher), for example, such as
ChaCha20 algorithm.

It is well known that the ChaCha20 algorithm is a symmetric encryption
algorithm with a randomly-generated encryption key and a random integer
'Nonce'. In an example implementation, when the ChaCha20 algorithm is
used, first encryption information can be generated from the randomly-

generated encryption key and the random integer '‘Nonce', such that the first

0109 20

10

15

20

25

-19 -

encryption information has a high entropy. It will be appreciated that in such
an case, the randomly-generated encryption key and the random integer
'Nonce' collectively constitute the aforementioned initialization value
(namely, the at least one initialization value from which the first encryption
information is generated). In the example implementation, subsequent

encryption information can be generated using an automated function.

It will be appreciated that the encryption algorithm can alternatively be a

suitable asymmetric encryption technique (for example, such as RSA).

According to an embodiment, the encryption information comprises at least
one key to be used to encrypt the unencrypted data values of the at least one
protected variable to generate the encrypted data values and/or to decrypt
the encrypted data values to re-generate the unencrypted data values of the
at least one protected variable. In some implementations, the at least one
key comprises a single large key. In other implementations, the at least one

key comprises a plurality of keys.

According to another embodiment, the encryption information comprises an
index of the at least one key to be used to encrypt the unencrypted data
values to generate the encrypted data values and/or to decrypt the encrypted
data values to re-generate the unencrypted data values. Optionally, in such
a case, the at least one key is to be generated by or accessed from a key
store using the index. Optionally, the key store is provided to the computing

device by a trusted service provider.

Optionally, indices are ordinal numbers of keys in an order of their occurrence
within the key store. Optionally, in this regard, the indices are pre-stored in
the key store together with their associated keys. Alternatively, optionally,
the indices are generated in the key store, and then associated with their
respective keys. As an example, the indices may be generated in a
consecutive manner corresponding to an order in which the keys are stored

in the key store.

0109 20

10

15

20

25

- 20 -

Optionally, the key store is protected, and the keys are made accessible for
use, internally within the protected key store, to at least one key-store
integrated software application, which accesses the keys for use via their
indices only. In other words, the keys are not accessible by software

applications or ecosystem processes from outside of the key store.

Optionally, the encryption information further comprises a unique identifier
of the key store from which the at least one key is to be generated or
accessed. This is particularly beneficial when there are a plurality of key
stores, and it is important to identify uniquely the key store from which the

at least one key is to be generated or accessed.

Optionally, the unique identifier of the key store is a serial number assigned

to the key store.

Optionally, the key store is implemented by way of a key container or a key
generator that is capable of storing keys and/or generating keys based upon
their indices in a reproducible manner. By ‘reproducible it is meant that a
same key is generated from a given index in a repeatable manner (namely,
in @ manner that the key generator always produces the same key with the
same index). As an example, the key store can be implemented as described
in a UK patent document GB2538052. As another example, the key store can
be implemented as described in a UK patent document GB GB2556638.

Optionally, the encoder, when in operation, selects the index randomly, and
uses the key store to generate the at least one key based upon the selected

index.

For illustration purposes only, there will now be described an example
implementation of the aforementioned system for providing protected data
storage of data values of a given protected variable used in an example
program (for example, a software application). There will now be considered

three stages of a runtime execution of the example program.

Phase A:

0109 20

5

10

15

20

25

30

-21 -

Before use, the data memory must be internally initialized. Typically, the
program is written in a manner that the internal initialization is taken care of
automatically. For example, when a given developer writes the program, the

given protected variable is uninitialized.

Step A1l: A required portion {(namely, a size) of the data memory is allocated
for storing encrypted data values of the given protected variable. The
required portion of the data memory is optionally equal to a size defined for
the given protected variable in the example program. Optionally, the
allocated portion of the data memory is set to a predefined default value of

the given protected variable.

It will be appreciated that the size of the allocated portion of the data memory
needs to be equal to or greater than the size defined for the given protected
variable. From a technical point of view, it is advantageous when the size of
the allocated portion of the data memory is greater than the size defined for
the given protected variable, because, in such a case, the size of the allocated

portion does not reveal the size defined for the given protected variable.

Step A2: A required portion (namely, a size) of the data memory is allocated
for storing encryption information. Optionally, the encryption information is
generated dynamically for a defined encryption algorithm. More optionally,

the encryption information is generated randomly.

Optionally, the encryption information is generated initially from at least one
initialization value, as described earlier. In such a case, the at least one
initialization value is stored in its corresponding allocated portion of the data
memory or an additional data memory, and is obfuscated (for example, by
performing various types of bit swaps) before the corresponding allocated

portion of the data memory or the additional data memory is released.
Phase B:

After the allocated portion of the data memory is initialized, the encrypted
data values of the given protected variable can be read from or written to the

allocated portion of the data memory.

0109 20

10

15

20

25

30

-22 -

Step B1: In operation, the aforementioned decoder accesses an encrypted
data value of the given protected variable from the allocated portion of the
data memory, and decrypts the encrypted data value (namely, in a form of
ciphertext) to generate a decrypted, namely an unencrypted data value

(namely, in a form of plaintext).

6] If the decryption is performed after the step A2, the encryption
algorithm is prepared for encryption and decryption purposes, and the
encrypted data value is decrypted into the unencrypted data value using the

encryption information generated during initialization.

0 If the decryption is performed after the step B3, the encryption
algorithm is already being used for encryption and decryption purposes, and
the encrypted data value is decrypted into the unencrypted data value using
newer encryption information that is re-generated dynamically during

encoding (namely, encrypting).

Step B2: The unencrypted data value is utilized for read or write operations
during the runtime execution of the program. Optionally, in this regard, the
unencrypted data value is returned to a calling function of the program during

the runtime execution.

Step B3: In operation, the aforementioned encoder re-generates new
encryption information, encrypts the unencrypted data value (namely, in a
form of plaintext) using the new encryption information to generate a newly-
encrypted data value (namely, in a form of ciphertext). The encrypted data
value stored previously is then replaced with the newly-encrypted data value

in the allocated portion of the data memory.

It will be appreciated that the encryption information is re-generated
dynamically after each encoding iteration; therefore, there is no need to
perform time-consuming initialization operations (as performed in the

aforementioned step A2) again.

As mentioned earlier, it is essential from the security perspective that a cycle

of the aforesaid steps B1, B2 and B3 is performed in a single thread of

0109 20

10

15

20

25

- 23 -

execution (namely, at one go without any hardware interruption), so that

there is no time window for interception by a malicious third party.
Phase C:

When the given protected variable is not required to be used any more in
future, the allocated portion of the data memory is internally finalized.
Typically, the program is written in @ manner that the internal finalization is
taken care of automatically. For example, when a given developer writes the
program, the given protected variable is uninitialized and the allocated

portion of the data memory is freed.

Optionally, last encryption information stored in its allocated portion of the
data memory is obfuscated, for example by performing various types of bit
swaps, before the allocated portion of the data memory is released. This
ensures that the data memory (for example, RAM, CPU register or the like)
does not store any data reference related to the last encryption information

that was stored during the memory usage.

Optionally, a last encrypted data value stored in the allocated portion of the
data memory is obfuscated before the allocated portion of the data memory

is released.

Upon successful completion of the phase C, the allocated portion of the data

memory is internally finalized, and is available for use to other programs.

Furthermore, for illustration purposes only, there will now be considered
some example cases indicating how re-generated encrypted information and
re-encrypted data are stored each time the data (D1) is read or is to be
written to the allocated portion of the data memory during a runtime
execution of a program. In other words, the encryption information of the
data to be encrypted always changes when the data is being handled, namely

read or written, during the runtime execution of the program.

In these examples, an example protected variable is allocated 32 bytes in the

data memory (hereinafter referred to as a first allocated portion for the sake

0109 20

10

15

20

25

-24 -

of convenience only) and encryption information is also allocated 32 bytes in
the data memory (hereinafter referred to as a second allocated portion for

the sake of convenience only).

An initial unencrypted data value of the example protected variable (namely,

as copied to the data memory for a first time) can be represented as follows:

84,0,101,0,115,0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133, 136, 38, 156,
203, 59, 74, 241, 229, 48, 145, 79, 145, 121, 110, 77

First encryption information is generated according to an encryption
algorithm employed, and is then stored in the second allocated portion of the
data memory. As an example, according to the ChaCha20 encryption
algorithm, the first encryption information can be generated from a
randomly-generated encryption key and a random integer 'Nonce', such that

the first encryption information has a high entropy.
The first encryption information can be represented as follows:

62, 60,2, 2,2, 150, 64, 74, 209, 139, 87, 136, 98, 230, 205, 9, 207, 121,
195, 172, 90, 116, 219, 136, 139, 125, 16, 147, 210, 198, 142, 12

The initial unencrypted data value is then encrypted using the first encryption
information to generate a first encrypted data value of the example protected
variable, wherein the first encrypted data value is stored in the first allocated
portion of the data memory. The first encrypted data value can be

represented as follows:

29, 48, 233, 223, 69, 12, 41, 180, 202, 230, 171, 145, 235, 25, 196,
236,105, 253,159, 71,82,79,131,222,213,61,62, 241, 66,59, 71,
191

Case A: Decrypting the first encrypted data value

The case A concerns the aforementioned step B1, wherein the first encrypted
data value of the example protected variable is accessed from the first

allocated portion of the data memory, and is decrypted using the

0109 20

10

15

20

25

- 25 -

aforementioned first encryption information (stored previously in the second
allocated portion of the data memory) to re-generate the initial unencrypted

data value of the example protected variable as follows:

84,0, 101,0, 115, 0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133, 136, 38, 156,
203, 59, 74, 241, 229, 48, 145, 79, 145, 121, 110, 77

Case B: Modifying the unencrypted data value

The case B concerns the aforementioned step B2, wherein a first byte of the
initial unencrypted data value of the example protected variable is changed
from '84' to '1'; and the modified unencrypted data value to be written can

be represented as follows:

1, 0,101, 0, 115, 0, 116, 0, 1065, 0, 110, 0, 103, 0, 0, 0, 133, 136, 38, 156,
203, 59, 74, 241, 229, 48, 145, 79, 145, 121, 110, 77

Case C: Encrypting the modified unencrypted data value

The case C concerns the aforementioned step B3, wherein second encryption
information is generated dynamically. The second encryption information can

be represented as follows:

60, 62, 148, 66, 72, 71, 203, 29, 89, 233, 177, 69, 107, 41, 180, 202, 99,

35, 183, 119, 210, 255, 166, 152, 24, 175, 214, 29, 222, 250, 176, 152

The second encryption information replaces the first encryption information
stored previously in the second allocated portion of the data memory. The
second encryption information is used to encrypt the modified unencrypted
data value to generate a second encrypted data value for storage in the first
allocated portion of the data memory. The second encrypted data value can

be represented as follows:

61,62, 241, 66, 59, 71, 191, 29, 48, 233, 223, 69, 12, 41, 180, 202,
230,171, 145, 235, 25,196, 236, 105, 253,159, 71,82,79, 131, 222,
213

0109 20

10

15

20

25

- 26 -

Case D: Reading a decrypted data value for a first time

In the case D, the second encrypted data value of the example protected
variable is accessed from the first allocated portion of the data memory, and
decrypted using the second encryption information stored in the second
allocated portion of the data memory to re-generate the unencrypted data

value as follows:

1, 0,101, 0, 115, 0, 116, 0, 1065, 0, 110, 0, 103, 0, 0, 0, 133, 136, 38, 156,
203, 59, 74, 241, 229, 48, 145, 79, 145, 121, 110, 77

Case E: Re-encrypting the same unencrypted data value

In the case E, in order to encrypt the same unencrypted data value, third
encryption information is generated dynamically; the third encryption

information can be represented as follows:

126, 118, 211, 137, 85, 30, 34, 172, 28, 130, 152, 241, 161, 74, 151, 125,
20, 241, 72, 209, 74, 231, 9, 78, 5, 113, 44, 173, 70, 132, 198, 75

The third encryption information replaces the second encryption information
stored previously in the second allocated portion of the data memory. The
third encryption information is used to encrypt the same unencrypted data
value to generate a third encrypted data value of the example protected
variable for storage in the first allocated portion of the data memory. The

third encrypted data value can be represented as follows:

127,118,182,137,38,30,86,172, 117,130, 246, 241, 198, 74, 151,
125, 145, 121, 110, 77, 129, 220, 67, 191, 224, 65, 189, 226, 215,
253,168, 6

Case F: Reading the decrypted data value for a second time

In the case F, the third encrypted data value of the example protected
variable is accessed from the first allocated portion of the data memory, and

decrypted using the third encryption information stored in the second

0109 20

10

15

20

25

- 27 -

allocated portion of the data memory to re-generate the unencrypted data

value as follows:

1, 0,101, 0, 115, 0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133, 136, 38, 156,
203, 59, 74, 241, 229, 48, 145, 79, 145, 121, 110, 77

Case G: Re-encrypting the same unencrypted data value

In the case G, in order to encrypt the same unencrypted data value, fourth
encryption information is generated dynamically; the fourth encryption

information can be represented as follows:

247, 35, 205, 171, 249, 2, 160, 52, 237, 35, 210, 102, 220, 94, 102, 53,
197, 187, 175, 216, 4, 226, 120, 98, 168, 55, 168, 107, 13, 115, 229, 134

The fourth encryption information replaces the third encryption information
stored previously in the second allocated portion of the data memory. The
fourth encryption information is used to encrypt the same unencrypted data
value to generate a fourth encrypted data value of the example protected
variable for storage in the first allocated portion of the data memory. The

fourth encrypted data value can be represented as follows:

246, 35, 168,171, 138, 2, 212,52, 132, 35, 188, 102, 187, 94, 102,
53, 64, 51, 137, 68, 207, 217, 50, 147, 77, 7, 57, 36, 156, 10, 139,
203

It will be appreciated that the aforesaid decryption and encryption operations
are performed in a repeating manner, without any interruption, in a single
thread of execution during the runtime execution of the program. An example
cycle of decryption and encryption has been illustrated in conjunction with
FIG. 2.

In the above examples, the encryption information to be stored (namely,
replacing any previously-stored encryption information) in the second
allocated portion of the data memory is shown as underlined text for the sake

of clarity only. Likewise, the encrypted data value to be stored (namely,

0109 20

10

15

20

25

30

- 28 -

replacing any previously-stored encrypted data value) in the first allocated

portion of the data memory is shown as bold text for the sake of clarity only.

In a second aspect, embodiments of the present disclosure provide a method
of (namely, a method for) providing protected data storage in a data memory
of a computing device, the method being implemented by a system
comprising an encoder and a decoder, characterized in that the method

comprises:

- generating, via the encoder, encryption information according to an
encryption algorithm;

- encrypting, via the encoder, unencrypted data (D1) using the
encryption information to generate encrypted data (E2) and storing the
encrypted data (E2) in an allocated portion of the data memory of the
computing device;

- accessing, via the decoder, the encrypted data (E2) from the allocated
portion of the data memory and decrypting the encrypted data (E2) using the
encryption information to re-generate the unencrypted data (D1);

- generating, via the encoder, new encryption information according to
the encryption algorithm; and

- re-encrypting, via the encoder, the unencrypted data (D1) using the
new encryption information to generate new encrypted data (E3) and
replacing the encrypted data (E2) with the new encrypted data (E3) and the
encryption information with the new encryption information in the allocated

portion of the data memory,

wherein the steps of generating newer encryption information, re-encrypting
the unencrypted data (D1) to generate newer encrypted data (EN+1) and
replacing previous encrypted data (EN) with the newer encrypted data
(EN+ 1) are repeated each time the unencrypted data (D1) is read from the
allocated portion of the data memory or the unencrypted data (D1) is to be

written to the allocated portion of the data memory,

further wherein the encoder and the decoder are integrated, such that the

steps of decrypting the previous encrypted data (EN) into the unencrypted

0109 20

10

15

20

25

- 29 -

data (D1) and re-encrypting the unencrypted data (D1) into the newer

encrypted data (EN+ 1) are performed in a single thread of execution.

Various embodiments and variants disclosed above apply mutatis mutandis
to the method.

Optionally, the method further comprises generating initially (namely, only
once), via the encoder, the encryption information from at least one
initialization value, as described earlier. Optionally, in such a case, the at
least one initialization value is stored in its corresponding allocated portion of

the data memory or an additional data memory on a temporary basis.

Optionally, the method further comprises obfuscating the at least one
initialization value stored in the data memory or the additional data memory
prior to releasing its corresponding allocated portion of the data memory or

the additional data memory.

Optionally, the method further comprises obfuscating last encrypted data
(EN+ 1) stored in the allocated portion of the data memory prior to releasing

the allocated portion of the data memory.

Moreover, the method further comprises storing, via the encoder, given
encryption information together with given encrypted data (E2, E3, EN or
EN+ 1) in the allocated portion of the data memory. Optionally, in such a case,
the method further comprises obfuscating last encryption information stored
in the allocated portion of the data memory prior to releasing the allocated

portion of the data memory.

According to another embodiment, the additional data memory is different
from the data memory used to store given encrypted data (E2, E3, EN or
EN+ 1). Optionally, in such a case, the method further comprises obfuscating
the last encryption information stored in the allocated portion of the additional
data memory prior to releasing the allocated portion of the additional data

memory.

0109 20

10

15

20

25

- 30 -

Optionally, in the method, the unencrypted data (D1) comprises unencrypted
data values of at least one protected variable that are to be utilized during a

runtime execution of a program.

Optionally, the encryption information comprises at least one key to be used
to encrypt the unencrypted data values to generate encrypted data values
and/or to decrypt the encrypted data values to re-generate the unencrypted

data values.

Alternatively, optionally, the encryption information comprises an index of
the at least one key to be used to encrypt the unencrypted data values to
generate the encrypted data values and/or to decrypt the encrypted data
values to re-generate the unencrypted data values. Optionally, in such a case,
the method further comprises generating by or accessing from a key store

the at least one key using the index.
Optionally, in the method, the encryption information is generated randomly.

In a third aspect, embodiments of the present disclosure provide a computer
program product comprising a non-transitory computer-readable storage
medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method pursuant to the

aforementioned second aspect.

Optionally, the computer-readable instructions are downloadable from a
software application store, for example, from an ’App store_ to the

computerized device.

Next, embodiments of the present disclosure will be described with reference
to FIGs. 1A and 1B.

FIGs. 1A and 1B are schematic illustrations of a system 100 for providing
protected data storage in a data memory 102 of a computing device, in
accordance with different embodiments of the present disclosure. Optionally,

the system 100 is implemented as custom-designed digital hardware that is

0109 20

10

15

20

25

30

-31 -

arranged to operate with hardware associated with controlling the data

memory 102, such as to provide a hybrid form of data memory hardware.

With reference to FIGs. 1A and 1B, the system 100 comprises an encoder
104 and a decoder 106. The encoder 104, when in operation, re-encrypts
unencrypted data (D1) using newly-generated encryption information to
generate new encrypted data (EN) each time the unencrypted data (D1) is
read from an allocated portion of the data memory 102 or new data (D1) is
to be written to the allocated portion of the data memory 102. The encoder
104, when in operation, stores the new encrypted data (EN) in the allocated
portion of the data memory 102. The decoder 106, when in operation,
accesses the previous encrypted data (EN) from the allocated portion of the
data memory, and decrypts the previous encrypted data (EN) using the
encryption information to re-generate the unencrypted data (D1). After the
unencrypted data (D1) is utilized (namely, for a read or write operation), the
encoder 104, when in operation, re-encrypts the unencrypted data (D1) into
newer encrypted data (EN+ 1), and replaces the previous encrypted data {EN)

with the newer encrypted data (EN+1).

The encoder 104 and the decoder 106 are integrated, such that the decoder
106 and the encoder 104, when in operation, decrypt the previous encrypted
data (EN) into the unencrypted data (D1) and re-encrypt the unencrypted
data (D1) into the newer encrypted data (EN+ 1), respectively, in a single

thread of execution.

With reference to FIG. 1B, the system 100 optionally comprises an
obfuscation module 108. The obfuscation module 108, when in operation,
obfuscates at least one initialization value (used to generate the encryption
information initially) stored in its corresponding allocated portion of the data
memory 102, prior to releasing the allocated portion of the data memory
102.

FIGs. 1A and 1B are merely examples, which should not unduly limit the

scope of the claims herein. A person skilled in the art will recognize many

0109 20

10

15

20

25

- 32 -

variations, alternatives, and modifications of embodiments of the present

disclosure.

FIG. 2 is a schematic illustration of how a cycle of decryption and encryption
is performed in a single thread of execution, pursuant to embodiments of the

present disclosure.

As shown, the cycle of decryption and encryption is performed in a single

thread of execution ‘THREAD 1" as follows:

Step 1: Access an encrypted data value of a protected variable from data
memory, and decrypt the encrypted data value (using encryption

information) to generate a decrypted data value, namely an unencrypted data

value.
Step 2: Utilize the unencrypted data value for a read or write operation.
Step 3: Encrypt the unencrypted data value (whether changed or

unchanged) using dynamically-generated encryption information into a new
encrypted data value, and replace the aforesaid encrypted data value with

the new encrypted data value in the data memory.

The thread 'THREAD 1' is not allowed to be suspended until the step 3 is
performed (namely, until the unencrypted data value is encrypted into the
new encrypted data value and the previous encrypted data value is replaced

with the new encrypted data value).

With reference to FIG. 2, the thread 'THREAD 1'is a component of a process
that has multiple threads, for example, such as threads 'THREAD 2' and
‘THREAD 3.

FIG. 2 is merely an example, which should not unduly limit the scope of the
claims herein. A person skilled in the art will recognize many variations,
alternatives, and modifications of embodiments of the present disclosure. For
example, the process may have only one thread of execution, namely the
thread 'THREAD 1.

0109 20

10

15

- 33 -

Modifications to embodiments of the present disclosure described in the
foregoing are possible without departing from the scope of the present
disclosure as defined by the accompanying claims. Expressions such as
‘including , ‘comprising , ‘incorporating _, ‘consisting of_, ‘have_ ‘is_ used
to describe and claim the present invention are intended to be construed in a
non-exclusive manner, namely allowing for items, components or elements
not explicitly described also to be present. Reference to the singular is also
to be construed to relate to the plural; as an example, "at least one of_
indicates ‘one of_in an example, and “a plurality of_ in another example;

moreover, ‘one or more _is to be construed in a likewise manner.

The phrases ‘in an embodiment_, ‘according to an embodiment_and the like
generally mean the particular feature, structure, or characteristic following
the phrase is included in at least one embodiment of the present disclosure,
and may be included in more than one embodiment of the present disclosure.

Importantly, such phrases do not necessarily refer to the same embodiment.

If the specification states a component or feature ‘may_ ‘can_ ‘could_ or
‘might_ be included or have a characteristic, that particular component or

feature is not required to be included or have the characteristic.

34

Claims

1.

A system that, when in operation, provides protected data storage in a data

memory of a computing device, characterized in that the system comprises:

an encoder executing on a processing hardware of the computing device, wherein

the encoder, when in operation:

- generates encryption information according to an encryption algorithm,

- encrypts unencrypted data (D1) using the encryption information to
generate encrypted data (E2),

- stores the encrypted data (E2) in an allocated portion of the data memory
of the computing device; and

- stores the encryption information in the allocated portion of the data
memory or an allocated portion of an additional data memory of the computing

device; and

a decoder executing on the processing hardware of the computing device, wherein

the decoder, when in operation:

- accesses the encrypted data (E2) from the allocated portion of the data
memory and the encryption information from the allocated portion of the data
memory or the allocated portion of the additional data memory, and

- decrypts the encrypted data (E2) using the encryption information to re-

generate the unencrypted data (D1);

wherein the encoder, when in operation:

- generates new encryption information according to the encryption
algorithm,

- re-encrypts the unencrypted data (D1) using the new encryption
information to generate new encrypted data (E3),

- replaces the encrypted data (E2) with the new encrypted data (E3) in the

allocated portion of the data memory, and

35

- replaces the encryption information with the new encryption information in
the allocated portion of the data memory or the allocated portion of the additional

data memory,

wherein the unencrypted data (D1) is re-encrypted using newer encryption information
to generate newer encrypted data (EN+ 1) each time the unencrypted data (D1) is read
from the allocated portion of the data memory or the unencrypted data (D1) is to be
written to the allocated portion of the data memory, wherein previous encrypted data
(EN) is to be replaced with the newer encrypted data (EN+ 1) in the allocated portion of

the data memory,

further wherein the encoder and the decoder are integrated, such that the decoder and
the encoder, when in operation, decrypt the previous encrypted data (EN) into the
unencrypted data (D1) and re-encrypt the unencrypted data (D1) into the newer
encrypted data (EN+ 1), respectively, in a single thread of execution, and wherein the
encoder and the decoder are implemented by way of a low-level code in an inline
configuration, such that the processing hardware of the computing device does not

interrupt a cycle of decryption and encryption.

2. A system of claim 1, characterized in that the encoder, when in operation,
generates the encryption information initially from at least one initialization value, and
the system further comprises an obfuscation module executing on the processing
hardware of the computing device, wherein the obfuscation module, when in operation,
obfuscates the at least one initialization value stored in its corresponding allocated
portion of the data memory or an additional data memory prior to releasing the

corresponding allocated portion of the data memory or the additional data memory.

3. A system of claim 1 or 2, characterized in that the additional data memory is

different from the data memory used to store given encrypted data (E2, E3, EN or EN+ 1),

4. A system of any one of claims 1 to 3, characterized in that the unencrypted data
(D1) comprises unencrypted data values of at least one protected variable that are to be
utilized during a runtime execution of a program, and the encryption information

comprises at least one key to be used to encrypt the unencrypted data values to generate

36

encrypted data values and/or to decrypt the encrypted data values to re-generate the

unencrypted data values.

5. A system of any one of claims 1 to 3, characterized in that the unencrypted data
(D1) comprises unencrypted data values of at least one protected variable that are to be
utilized during a runtime execution of a program, and the encryption information
comprises an index of at least one key to be used to encrypt the unencrypted data values
to generate encrypted data values and/or to decrypt the encrypted data values to re-
generate the unencrypted data values, wherein the at least one key is to be generated

by or accessed from a key store using the index.

6. A system of claim 5, characterized in that the encryption information further
comprises a unique identifier of the key store from which the at least one key is to be

generated or accessed.

7. A system of any one of claims 1 to 6, characterized in that the encoder, when in

operation, generates the encryption information randomly.

8. A method for providing protected data storage in a data memory of a computing
device, the method being implemented by a system comprising an encoder and a
decoder, characterized in that the method comprises:

- generating, via the encoder, encryption information according to an encryption
algorithm;

- encrypting, via the encoder, unencrypted data (D1) using the encryption
information to generate encrypted data (E2);

- storing the encrypted data (E2) in an allocated portion of the data memory of the
computing device;

- storing the encryption information in the allocated portion of the data memory or
an allocated portion of an additional data memory of the computing device

- accessing, via the decoder, the encrypted data (E2) from the allocated portion of
the data memory and the encryption information from the allocated portion of the data
memory or the allocated portion of the additional data memory;

- decrypting the encrypted data (E2) using the encryption information to re-
generate the unencrypted data (D1);

37

- generating, via the encoder, new encryption information according to the
encryption algorithm; and

- re-encrypting, via the encoder, the unencrypted data (D1) using the new
encryption information to generate new encrypted data (E3);

- replacing the encrypted data (E2) with the new encrypted data (E3) in the
allocated portion of the data memory, and replacing the encryption information with the
new encryption information in the allocated portion of the data memory or the allocated

portion of the additional data memory;

wherein the steps of generating newer encryption information, re-encrypting the
unencrypted data (D1) to generate newer encrypted data (EN+ 1) and replacing previous
encrypted data (EN) with the newer encrypted data (EN+ 1) are repeated each time the
unencrypted data (D1) is read from the allocated portion of the data memory or the

unencrypted data (D1) is to be written to the allocated portion of the data memory,

further wherein the encoder and the decoder are integrated, such that the steps of
decrypting the previous encrypted data (EN) into the unencrypted data (D1) and re-
encrypting the unencrypted data (D1) into the newer encrypted data (EN+1) are
performed in a single thread of execution, and wherein the encoder (104) and the
decoder (106) are implemented by way of a low-level code in an inline configuration,

such that a cycle of decryption and encryption is not interrupted.
9. A method of claim 8, characterized in that the method further comprises:

- generating initially, via the encoder, the encryption information from at least one

initialization value; and

- obfuscating the at least one initialization value stored in its corresponding allocated
portion of the data memory or an additional data memory prior to releasing the

corresponding allocated portion of the data memory or the additional data memory.

10. A method of claim 8 or 9, characterized in that the additional data memory is

different from the data memory used to store given encrypted data (E2, E3, EN or EN+1).

11. A method of any one of claims 8 to 10, characterized in that the unencrypted data

(D1) comprises unencrypted data values of at least one protected variable that are to be

38

utilized during a runtime execution of a program, and the encryption information
comprises at least one key to be used to encrypt the unencrypted data values to generate
encrypted data values and/or to decrypt the encrypted data values to re-generate the

unencrypted data values.

12. A method of any one of claims 8 to 10, characterized in that the unencrypted data
(D1) comprises unencrypted data values of at least one protected variable that are to be
utilized during a runtime execution of a program, and the encryption information
comprises an index of at least one key to be used to encrypt the unencrypted data values
to generate encrypted data values and/or to decrypt the encrypted data values to re-
generate the unencrypted data values, wherein the method further comprises generating

by or accessing from a key store the at least one key using the index.

13. A method of any one of claims 8 to 12, characterized in that the encryption

information is generated randomly.

14, A computer program product comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized device comprising processing

hardware to execute a method as claimed in any one of claims 8 to 13.

