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(57) ABSTRACT

There is provided an encoder for encoding input data to
generate corresponding encoded data. The encoder is oper-
able to process the input and to encode at least a portion
thereof using at least one Delta encoding algorithm, and to
generate one or more predictors for use in encoding one or
more subsequent portions of the input data, wherein the
encoder is also operable to encode data generated by the at
least one Delta encoding algorithm and the one or more
predictors by employing at least one entropy encoding
algorithm to generate the encoded data. There is provided a
decoder for decoding the encoded data to generate corre-
sponding decoded data; optionally, the decoded data and the
input data are mutually similar.
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1
ENCODER, DECODER AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of PCT/EP2015/
025053, filed Jul. 21, 2015, which claims priority under 35
U.S.C. § 119 to GB Application No. 1412937 .3, filed Jul. 21,
2014, all of which are incorporated herein by reference in
their entirety.

TECHNICAL FIELD

The present disclosure relates to methods of encoding
data, for example to a method of encoding data using Delta
coding which employs one or more predictors. Moreover,
the present disclosure relates to methods of decoding data,
for example to a method of decoding data using Delta
decoding which employs one or more predictors. Moreover,
the present disclosure relates to systems, apparatus and
devices for implementing aforementioned methods. Further-
more, the present disclosure is concerned with computer
program products comprising a non-transitory computer-
readable storage medium having computer-readable instruc-
tions stored thereon, the computer-readable instructions
being executable by a computerized device comprising
processing hardware to execute aforesaid methods.

BACKGROUND

Conventionally, in general, many video codecs, for
example MPEG-4, H.264, VC-1, HEVC and VP9, are able
to utilize previous frames for motion estimation of image
blocks; these example codec names include trademarks.
Motion estimation and motion compensation are executed
block-by-block for each video image frame. Similarly, de-
duplication methods or processing via use of databases can
be used to utilize already coded data blocks or data packets
when encoding a given current data block or data packet.
Delta coding can be used for reducing entropy of data
symbols present in video or similar types of content. ODelta
coding, as will be elucidated in greater detail below, is also
optionally used for further reducing entropy of data sym-
bols. Moreover, ODelta coding makes it possible to reduce
the entropy of individual bits; methods associated with
ODelta coding will be described in greater detail later in
APPENDIX 1. Both DPCM-style methods, namely Delta
coding and ODelta coding, utilize previous data values when
creating an encoded data value for an entropy encoder.

On account of the amount of data and its transfer are
contemporarily increasing rapidly, a need for data compres-
sion is also increasing, and new and better methods are
needed to improve the efficiency of data compression. The
data can, for example, be captured from one or more sensors,
for example images, video, audio, measurement data, or be
various types of binary data, ASCII data and so forth; a
mixture of captured sensor data and abstract data is also
feasible.

There are multiple coding methods presently available
when encoding data, but none of them offer a good enough
compression ratio for all different kinds of data. When
encoding a given current channel, frame, data block or data
packet, there is often also a need to code different data
channels or frames, for example color (English: “colour”),
image channels, audio channels, parallel data measurement,
separate images in video, separate packets in audio, 3D
images, 3D audio and so forth, separately, while still utiliz-
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2

ing information of already coded channels, frames, data
blocks or data packets. Known data encoding methods are
not sufficiently versatile for coping with input data, which
has such a wide diversity of data structures therein.

Similarly, the spatial information that is already encoded
is also beneficially utilized more efficiently for encoding
than by using a known method such as DPCM (http://
en.wikipedia.org/wiki/DPCM). There is also a need for
simple, but efficient, encoding and decoding methods that
enable lossless and lossy coding of data to be achieved. A
method is provided via the ODelta method, as will be
described in greater detail later in APPENDIX 1, but there
is a need to utilize ODelta methods much more efficiently,
for example in a manner that modifies typical known Delta
coding, making Delta coding from DPCM suitable also to be
used with different predictors. Such an approach enables
better entropy reduction for negative and positive differ-
ences, or sum, values for symbols than conventional known
Delta coding as in, for example, DPCM.

There is a lack of known methods that are able to combine
both properties, namely data reutilization by employing
advanced prediction methods and efficient entropy reduction
of residual data with or without quantization, by delivering
or storing only the method selection, namely for frame,
channel, data block or data packet, and the encoded residual
values, namely without any motion vectors, selection sym-
bols or database references. Sometimes, even the residual
coding is not needed, because:

(1) the prediction is perfect;

(ii) the residual is constant for all data values, and one value
is enough to deliver it; or

(iii) the residual with or without quantization is below an
error threshold based on a quality parameter.

SUMMARY

The present invention seeks to provide an improved
method of encoding data, based upon use of Delta encoding
algorithms.

Moreover, the present invention seeks to provide an
improved encoder for encoding data, based upon use of
Delta encoding algorithms.

Furthermore, the present invention seeks to provide an
improved method of decoding data, based upon use of
inverse Delta encoding algorithms.

Furthermore, the present invention seeks to provide an
improved decoder for decoding data, based upon use of
inverse Delta encoding algorithms.

According to a first aspect, there is provided an encoder
for encoding input data (D1) to generate corresponding
encoded data (E2), characterized in that the encoder is
operable to process the input (D1) and to encode original
values of at least a portion thereof, using at least one Delta
encoding algorithm, into delta values that are expressed
using a value range that is not increased as compared to a
value range of the original values, and to generate one or
more predictors for use in encoding one or more subsequent
portions of the input data (D1), wherein the encoder is also
operable to encode data generated by the at least one Delta
encoding algorithm (ODelta, DDelta, IDelta, PDelta) and
the one or more predictors by employing at least one entropy
encoding algorithm to generate the encoded data (E2),
wherein the one or more predictors include at least one of:
(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject to
quantization; and
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(iii) one or more local spatial predictors utilizing pre-
computed values.

The present invention is of advantage in that a combina-
tion of Delta encoding, generation of one or more local
spatial predictors, utilizing a variety of different delivery
methods of delta values, and entropy encoding is capable of
providing highly efficient data encoding.

“Local spatial predictor” is optionally referred to as “local
predictor” or “spatial predictor” as an abbreviation.

With reference to pre-computed values, the values can be
any values that can be determined before performing the
process for the data, based on spatial location; namely; that
is, they are not local spatial predictors as in ODelta encod-
ing, as described in APPENDIX 1. Examples of such
pre-computed values include a previous block on a left-
hand-side or above in relation to a current data block to be
encoded, a location of the same data block in some previous
channel, view or frame, or internal motion prediction within
a given data frame.

The prediction according to the method is typically deter-
mined beforehand once and for all. That is, a prediction for
a given block is determined beforehand once and for all with
either temporal or spatial prediction. In addition to the
blocks, channels, views and frames mentioned above,
motion estimation is also conveniently considered to be a
temporal prediction. Motion estimation can also be per-
formed spatially, in which case it is a question of a spatial
predictor defined in element (iv) above. That is, the motion
estimation predictions do not always have to differ from one
another temporally. The spatial prediction herein differs
from the “local spatial prediction™ utilized for example in
ODelta method, described in APPENDIX 1. When “local
spatial prediction” is used the prediction occurs during the
method process, and the predictor values are not available
before the previous values have been processed. This is
different in comparison to temporal predictions and other
spatial predictions. Optionally, the prediction can be deter-
mined as the process proceeds, as in ODelta (see APPEN-
DIX 1). In such a case, local spatial predictors in Delta
coding are used.

Optionally, in the encoder, the at least one Delta encoding
algorithm:

(a) using a data processing arrangement for applying to the
input data (DA1) a form of differential and/or sum encoding
to generate one or more corresponding encoded sequences;
and

(b) using the data processing arrangement to subject the one
or more corresponding encoded sequences to a wrap around
a maximum value and/or a wrap around a minimum value,
for generating the encoded output data (DA2 or DA3)
(=ODelta).

Optionally, it is also possible to use the Delta encoding
algorithm in a following way. If a difference between a given
original value and a corresponding predicted value is always
zero or positive, or if the difference between the given
original value and the corresponding predicted value is zero
or negative, with or without quantization being applied, then
it is possible to express and deliver only the sign, for
example sign bit, of the delta values together with coding
algorithm information. Thus, in such cases, wrapping, as
employed in the ODelta algorithm, will not be needed at all,
because the values will always fit into a given bit count
range, even without wrapping. Such algorithms used in this
way are conveniently referred to, for example, as an IDelta
(“Incremental Delta”) method and a DDelta (“Decremental
Delta”) method. The IDelta method thus delivers only
positive delta values, and the DDelta method delivers only
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negative delta values, however often, beneficially, swapping
the sign, namely sign bit. This swapping is done only for
DDelta values, and only when delivering them. Both meth-
ods described above, of course, are also always able to
deliver unchanged values together with a zero symbol/value,
whether this unchangedness has been achieved with quan-
tization or without quantization; namely, in such case, the
difference between those delta values is not larger than the
quantization used.

Moreover, optionally, it is also possible to use delta values
together with a pedestal value. This means that if there were
to occur both negative and positive delta values but their
absolute values were small as regards their dynamic range
and bit depth of the data being coded, then it is sometimes
beneficial to deliver to the pedestal value of the change,
namely the largest negative change, as quantized or not.
After that, it is possible to deliver only positive change
values, just as in the aforementioned IDelta method. Such a
method employing a pedestal value can be conveniently
referred to as a. “PDelta method”. Often, when the PDelta
method is used, the dynamic range/bit depth of the data can
be decreased more than when the original ODelta algorithm,
see APPENDIX 1, is used. That is, the data can be expressed
using less bits because the maximum value of the data will
be smaller and therefore the difference between the smallest
and the largest possible value will be corresponding smaller;
such benefit arises because the original ODelta method, see
APPENDIX 1, must always express and deliver the dynamic
range of the occurring values, namely the value range of the
ODelta values to be delivered.

The IDelta, DDelta and PDelta methods described above
are beneficial to use in embodiments of the present disclo-
sure where the prediction that is being used is, for example,
the previous block, channel, image or some other set of
values determined, and declared, before using these meth-
ods. Therefore, the difference between the value being coded
and the prediction value is easily determined once and for
all, and thus the prediction for the value or the difference is
not at all dependent upon the other values being coded.
These kinds of predicting solutions, referred to called as
“temporal predictors” or “spatial predictors”, are also espe-
cially very well suited to be used with quantization, because
the quantization of the difference values will influence only
a single given individual data value to be decoded, and thus
the error caused by quantization cannot accumulate into
other data values to be decoded. Quantization can be used
also with local spatial predictors, but in such a case, the
algorithm needs to take into account the quantization error
when predicting next value, so that the quantization error
does not start cumulating.

Known types of Delta coding are implemented by reduc-
ing from a given current value a prediction value, which is
achieved by using a local spatial predictor, and the difference
of these values can result in both positive and negative
values and therefore, the sign always needs to be delivered
with the difference value. In ODelta coding, see APPENDIX
1, a difference or a sum of the current value and prediction
value can be used and, moreover, delivery of the values is
conducted by using wrapping the values, thus resulting in
values that are always positive.

As aforementioned, the IDelta, DDelta and PDelta meth-
ods differ from the known Delta method, as well as the
earlier ODelta method, as described in APPENDIX 1,
wherein the prediction value is delivered using wrapping.
Further, in the ODelta method described in APPENDIX 1,
the predictor to be used is limited to a local spatial predictor
utilizing one value only, and it is used always without
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quantization. However, such limitations are not necessary
for the embodiments of the present disclosure which are also
utilizing other kinds of predictors and/or quantization, even
optionally in combination with the aforementioned ODelta
method. It is also feasible to use the original ODelta method
that employs wrapping in the IDelta, DDelta or PDelta
methods, because it is often a good solution and in some
cases it is even a better solution than these aforementioned
IDelta, DDelta and PDelta methods. This is because the
original ODelta method that employs wrapping is often able
to express both positive and negative difference with one and
the same wrapped value/symbol. The original ODelta
method that employs wrapping performs this in such a way
that the positive and negative values can be distinguished
from one another later, based on a value range and a
prediction value, whereas in these aforementioned IDelta,
DDelta and PDelta methods only zero value and positive, or
negative difference values are delivered, and thus no other
distinguishing is needed in association therewith.

Optionally, information about the used prediction or pos-
sibly used quantization is often delivered together with the
method selection information. Beneficially, the information
on quantization can often be delivered for an entire sequence
of data in one go, by using one quantization value or one
quality value. Examples of such methods are, for example,
IDeltaBlockFromChannel0, PDeltaChannelR_2, DDelta-
Frame_4, ODeltaBlockMode and DDeltaPacketPrevQ70.
The first one of these methods, namely IDeltaBlockFrom-
Channel0, delivers only positive difference values in relation
to the channel 0 values in a given corresponding block,
namely each data value in the data block currently being
coded is larger than or at least equal to the value in the
corresponding location in channel O of the block that is used
as prediction.

The second one of these methods, PDeltaChannelR_2,
delivers a pedestal value followed by positive difference
values, namely differences between the current channel and
R channel, further quantized by two. The method referred to
as DDeltaFrame_4 is well suited for, for example, a gradu-
ally darkening image. It delivers negative value changes as
compared with the previous frame, quantized by four. The
method referred to as ODeltaBlockMode delivers for the
current block area wrapped difference values, as compared
with the mode value. Optionally, this mode value can be
sent/delivered for each block separately, or as predicting
mode value the mode value of the entire data channel or the
mode value of the entire data frame can be used. DDel-
taPacketPrevQQ70 delivers negative data values for the cur-
rent packet, as compared with the previous packet that had
the same size and quantization for delta values is defined by
using a quality factor 70.

The examples presented above are not construed to limit
the scope of protection of the present invention, as defined
by the appended claims, because many other similar meth-
ods can be used to describe various different embodiments
of the method pursuant to the disclosure. Optionally,
together with all these methods, data value limits can be
delivered, as they are usually maximum values, so that the
data being delivered can be compressed as efficiently as
possible.

The present disclosure defines and describes an alterna-
tive way to use efficiently known encoding methods to
encode data in a partial manner, while not interfering with
the operation of the encoding algorithms themselves. Thus,
the methods of embodiments described in this disclosure
below are, for example, beneficially used together with other
known methods, or they can replace known coding methods.
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The methods of the present disclosure use different predic-
tors and optionally quantizers to ensure lower entropy for
any entropy encoder after the operation of these methods of
embodiments of the disclosure.

Optionally, the encoder is operable to employ at least one
quantization algorithm when encoding the input data (D1) to
generate the encoded data (E2), wherein the at least one
quantization algorithm results in the encoder providing lossy
encoding of the input data (D1).

Optionally, the encoder is operable to employ different
algorithms for encoding data of different data structures
present in the input data (D1).

Optionally, the encoder is operable to employ RD opti-
mization when encoding the input data (D1) block-by-block.
More optionally, in the encoder, the RD optimization is
computed within the encoder to minimize a value V of an
equation:

V=D+h*R

wherein the distortion (D) is, for example, a sum of squares

error (SE) between the input data (D1) and a representation

of the input data (D1) encoded into the encoded data (E2)
and decoded into the decoded data (D3), and wherein a rate

(R) represents an amount of encoded data measured, for

example, as bits.

Optionally, in the encoder, the at least one Delta encoding
algorithm (ODelta, DDelta, 1Delta, PDelta) and/or the at
least one entropy encoding algorithm is operable to employ
at least one of: DC methods, slide methods, multilevel
methods, DCT methods, line methods, scale methods, data-
base methods, Range coding, Huffman coding, RLE coding,
SRLE coding.

Optionally, the encoder is operable to encode the input
data (D1) including data structures corresponding to at least
one of: YUV channels, BGR channels. More optionally, the
encoder is operable to encode data of the channels in an
order Y, U, V or in an order G, B, R. The alpha channel,
namely the transparency channel, can also be coded sepa-
rately or together with the other channels. Correspondingly,
the data being coded may be audio data, in which case the
sound amplitude values, which may have bit depths 8, 16 or
24 for example, can be coded separately channel by channel
or many channels at one go. Therefore, whether the data
being coded is audio, images, video, genome data, measure-
ment results, text, binary or anything else, the bit depth of
the data being coded can vary for one to, for example, 256
bits per data element.

Optionally, the encoder is operable to include such data in
the encoded data (E2) which is indicative of one or more
encoding algorithms employed by the encoder to encode the
input data (D1) to generate the encoded data (E2).

According to a second aspect, there is provided a method
of'using an encoder for encoding input data (D1) to generate
corresponding encoded data (E2), characterized in that the
method includes:
using the encoder to process the input (D1) and to encode

original values of at least a portion thereof, using at least

one Delta encoding algorithm (ODelta, DDelta, IDelta,

PDelta), into delta values that are expressed using a value

range that is not increased as compared to a value range

of the original values;

(ii) using the encoder to generate one or more predictors for
use in encoding one or more subsequent portions of the
input data (D1); and

(iii) using the encoder to encode data generated by the at
least one Delta encoding algorithm and the one or more
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predictors by employing at least one entropy encoding

algorithm to generate the encoded data (E2),
wherein the one or more predictors include at least one of:
(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject to
quantization; and
(iii) one or more local spatial predictors utilizing pre-
computed values.

Optionally, in the method, the at least one Delta encoding
algorithm is implemented by:

(a) using a data processing arrangement for applying to the
input data (DA1) a form of differential and/or sum encoding
to generate one or more corresponding encoded sequences;
and

(b) using the data processing arrangement to subject the one
or more corresponding encoded sequences to a wrap around
a maximum value and/or a wrap around a minimum value,
for generating the encoded output data (DA2 or DA3)
(=ODelta).

Optionally, it is also possible to use the ODelta method,
see APPENDIX 1, in a following way. If the difference
between a given original value and a corresponding pre-
dicted value is always zero or positive, or if the difference
between the original value and the predicted value is zero or
negative, with or without quantization being employed, then
it is possible to express and deliver only the sign, namely
sign bit, of the delta values together with coding method
information. Thus, in such cases, wrapping will not be
needed at all, because the values will always fit into the
given bit count, even without wrapping.

Methods used in this way can be conveniently referred to
as, for example, an [Delta (“Increment Delta””) method and
a DDelta (“Decrement Delta”) method. The IDelta method
thus delivers only positive delta values, and the DDelta
method delivers only negative delta values, however often,
beneficially, swapping the sign, namely the sign bit. Both
methods described above of course always also deliver
unchanged values together with a zero symbol/value,
whether this unchangedness has been achieved with quan-
tization or without quantization; namely, in such case, the
difference between the values is not larger than the quanti-
zation used.

Moreover, optionally, it is also possible to use delta values
together with a pedestal value. This means that if there were
to occur both negative and positive delta values but their
absolute values were small as regards the dynamic range and
bit depth of the data being coded, then it would be some-
times beneficial to deliver the pedestal value of the change,
namely the largest negative change, quantized or not. After
that, it is possible to deliver only positive change values, just
as in the aforementioned IDelta method. Such a pedestal
method can be referred to, for example, as a “PDelta
method”. Often, when the PDelta method to is used, the
dynamic range/bit depth of the data can be decreased more
than when the original ODelta method as described in
APPENDIX 1 is used. That is, the data can be expressed
using less bits because the maximum value of the data will
be smaller and therefore the difference between the smallest
and the largest possible value will be smaller. This arises
because the ODelta method must always express and deliver
the dynamic range of the occurring values, namely the value
range of the ODelta values to be delivered.

The IDelta, DDelta and PDelta methods described above
are beneficial to use in such solutions where the prediction
that is being used is, for example, a previous block, channel,
image or some other set of values determined and declared
before using these methods. Therefore, the difference
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between the value being coded and the prediction value is
easy to be determined once and for all, and thus the
prediction for the value or the difference are not dependent
upon the other values being coded. These kinds of predicting
solutions are also especially very well suited to be used with
quantization, because, in these cases, the quantization of the
difference values will influence only the one individual data
value to be decoded, and thus the error caused by quanti-
zation cannot cumulate into other data values to be decoded.

Optionally, information about the used prediction or pos-
sibly used quantization is often delivered together with the
method selection information. Beneficially, the information
on quantization can often be delivered for an entire sequence
of data in one go by using one quantization value or quality
value. Examples of such methods are, for example, conve-
niently referred to as being IDeltaBlockFromChannelO,
PDeltaChannelR_2, DDeltaFrame 4, ODeltaBlockMode
and DDeltaPacketPrev. The first one of these methods,
namely [DeltaBlockFromChannel0, delivers only positive
difference values in relation to the channel 0 values in the
corresponding block. That is, each data value in the data
block currently being coded is larger than or at least equal
to the value in the corresponding location in channel 0 of the
block that is used as prediction.

The second one of these methods, namely PDeltaChan-
nelR_2, delivers a to pedestal value followed by positive
difference values, namely differences between the current
channel and R channel, further quantized by two. The
method DDeltaFrame_4 is well suited for a gradually dark-
ening image, for example. It delivers negative value changes
as compared with the previous frame, quantized by four. The
method ODeltaBlockMode delivers for the current block
area wrapped difference values, as compared with the mode
value. Optionally, this mode value can be sent/delivered for
each block separately, or as predicting mode value the mode
value of the entire data channel or the mode value of the
entire data frame can be used.

The DDeltaPacketPrev method delivers negative data
values for the current packet, as compared with the previous
packet that had a similar size.

Optionally, the method includes arranging for the encoder
to employ at least one quantization algorithm when encod-
ing the input data (D1) to generate the encoded data (E2),
wherein the at least one quantization algorithm results in the
encoder providing lossy encoding of the input data (D1).

Optionally, the method includes arranging for the encoder
to employ different algorithms for encoding data of different
data structures present in the input data (D1).

Optionally, the method includes arranging for the encoder
(100) to employ RD optimization when encoding the input
data (D1) block-by-block, packet-by-packet, channel-by-
channel, view-by-view or frame-by-frame. More optionally,
in the method, the RD optimization is computed within the
encoder (100) to minimize a value V of an equation:

V=D+L*R

wherein the distortion (D) is a sum of squares error (SE)
between the input data (D1) and a representation of the input
data (D1) encoded into the encoded data (E2) and decoded
into the decoded data (D3), and wherein a rate (R) represents
an amount of encoded data measured, for example, as bits.

Optionally, in the method, the at least one Delta encoding
algorithm (ODelta, DDelta, Delta, PDelta) and/or the at least
one entropy encoding algorithm is operable to employ at
least one of: DC methods, slide methods, multilevel meth-
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ods, DCT methods, line methods, scale methods, database
methods, Range coding, Huffman coding, RLE coding,
SRLE coding.

Optionally, the method includes arranging for the encoder
(100) to encode the input data (D1) including data structures
corresponding to at least one of: YUV channels, BGR
channels. More optionally, the method includes arranging
for the encoder (100) to encode data of the channels in an
order Y, U, V or in an order G, B, R. The alpha channel,
namely the transparency channel, can also be coded sepa-
rately or together with the other channels. Correspondingly,
the data being coded may be audio data, in which case the
sound amplitude values, which may have, for example, bit
depths 8, 16 or 24, can be coded separately, channel by
channel, or many channels in one go. Therefore, whether the
data being coded is audio, images, video, genome data,
measurement results, text, binary or anything else, the bit
depth of the data being coded can vary for one to 256 bits
per data element, for example.

Optionally, the method includes arranging for the encoder
to include such data in the encoded data (E2) which is
indicative of one or more encoding algorithms employed by
the encoder to encode the input data (D1) to generate the
encoded data (E2).

According to a third aspect, there is provided a decoder
for decoding encoded data (E2) to generate corresponding
decoded data (D3), characterized in that the decoder is
operable to perform an inversion of encoding algorithms
implemented in an encoder pursuant to the first aspect.

Thus, there is provided a decoder for decoding encoded
data (E2) to generate corresponding decoded data (D3),
characterized in that the decoder is operable to process the
encoded data (E2) by applying at least one entropy decoding
algorithm thereto to generate processed data, and to use one
or more predictors in combination with at least one Delta
decoding algorithm (inverse ODelta, inverse DDelta,
inverse Delta, inverse PDelta) to decode the processed data
to generate the decoded data (D3),
wherein the processed data includes delta values that are
expressed using a value range that is not increased as
compared to a value range of original data from which the
encoded data (E2) was generated,
wherein the one or more predictors include at least one of:
(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject to
quantization; and
(iii) one or more local spatial predictors utilizing pre-
computed values.

With reference to pre-computed values, the values can be
any values that can be determined before performing the
process for the data, based on spatial location; namely; that
is, they are not local spatial predictors as in ODelta encod-
ing, as described in APPENDIX 1. Examples of such
pre-computed values include a previous block on a left-
hand-side or above in relation to a current data block to be
encoded, a location of the same data block in some previous
channel, view or frame, or internal motion prediction within
a given data frame.

Optionally, the decoder is operable to receive information
indicative of a method, and then proceeds to execute a
prediction according to the method and computes values to
be decoded according to various different methods; in other
words information of the used method is received at the
decoder; and based on that information, it can be known
whether to use the pedestal method (PDelta), or whether
only positive difference values will occur (IDelta or PDelta),
or whether negative difference values will occur (DDelta), or
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whether a regular wrap and limit values are used to differ-
entiate between those negative and positive values (ODelta).

Optionally, in operation, the decoder receives information
indicative of a method, executes prediction according to the
method and computes values to be decoded according to
various different methods, namely information of the used
method is received, and based on that information, it can be
known whether to use the pedestal method (PDelta), or
whether only positive difference values will occur (IDelta or
PDelta), or whether negative difference values will occur
(DDelta), or whether a regular wrap and limit values are
used to differentiate between those negative and positive
values (ODelta). The prediction can be determined once and
for all, or it can be determined as the process proceeds, as in
ODelta (see APPENDIX 1). The original ODelta-type pro-
cedure which determines the prediction during the process is
referred to as “local spatial prediction”, also as “local
prediction”, and this new prediction solution, where the
prediction for a block is determined beforehand once and for
all, is referred to as “temporal prediction” or “spatial pre-
diction”. In addition to the blocks, channels, views and
frames mentioned above, motion estimation is also consid-
ered “temporal prediction”.

According to a fourth aspect, there is provided a method
of decoding encoded data (E2) in a decoder to generate
corresponding data (D3), characterized in that the method of
decoding includes executing in the decoder an inverse of a
method pursuant to the second aspect.

The method of decoding encoded data (E2) in a decoder
(120) to generate corresponding data (D3), is characterized
in that the method of decoding includes processing the
encoded data (E2) by applying at least one entropy decoding
algorithm thereto to generate processed data, and using one
or more predictors in combination with at least one Delta
decoding algorithm (=inverse ODelta, inverse DDelta,
inverse Delta, inverse PDelta) to decode the processed data
to generate the decoded data (D3), wherein the processed
data includes delta values that are expressed using a value
range that is not increased as compared to a value range of
original data from which the encoded data (E2) was gener-
ated,
wherein the one or more predictors include at least one of:
(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject to
quantization; and
(iii) one or more local spatial predictors utilizing pre-
computed values.

Pre-computed values are elucidated in the foregoing,
likewise local predictors.

According to a fifth aspect, there is provided a computer
program product comprising a non-transitory computer-
readable storage medium having computer-readable instruc-
tions stored thereon, the computer-readable instructions
being executable by a computerized device comprising
processing hardware to execute a method pursuant to the
second aspect or fourth aspect.

It will be appreciated that features of the invention are
susceptible to being combined in various combinations
without departing from the scope of the invention as defined
by the appended claims.

DESCRIPTION OF THE DIAGRAMS

Embodiments of the present disclosure will now be
described, by way of example only, with reference to the
following diagrams wherein:
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FIG. 1 is a schematic illustration of an example upper-
level structure of an embodiment of the present disclosure;
FIG. 2 is a schematic illustration of an example channel
of six blocks of an embodiment of the present disclosure;

FIG. 3 is a schematic illustration of an example block and
its associated composition;

FIG. 4 is a schematic illustration of neighbourhood data
values for prediction purposes, pursuant to an embodiment
of the present disclosure;

FIG. 5 is a schematic illustration of an encoder, a decoder
and codec pursuant to the present disclosure; and

FIGS. 6 to 8 relate to supporting disclosure in APPENDIX
1 regarding ODelta methods.

In the accompanying diagrams, an underlined number is
employed to represent an item over which the underlined
number is positioned or an item to which the underlined
number is adjacent. A non-underlined number relates to an
item identified by a line linking the non-underlined number
to the item. When a number is non-underlined and accom-
panied by an associated arrow, the non-underlined number is
used to identify a general item at which the arrow is
pointing.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

When describing embodiments of the present disclosure
in the following, abbreviations are employed as provided in

Table 1:

TABLE 1

details of acronyms emploved to describe embodiments

Acronym Detail

1D 1-Dimensional, for example referring to a signal or data
packet

2D 2-Dimensional, for example referring to a signal or data
packet

3D 3-Dimensional, for example referring to a signal or data
packet

Block Multiple data elements from digital data, namely a part of
digital data

CRC Cyclic redundancy check

Codec Encoder and decoder for digital data

DB Database in RAM-based or ROM-based memory

DC DC-component of an image, namely an image mean,
corresponding to an average brightness and repre-
sents a lowest spatial frequency present in the image

Delta Delta coding is a way of storing or transmitting data

Coding in a form of differences between sequential data rather
than complete data files

ISP Internal Switch Provider

LAN Local Area Network

Packet A body of data including, for example, a plurality of
data blocks

RAM Random Access Memory

RD Rate-Distortion

RLE Run-Length Encoding

ROI Region of Interest

ROM Read Only Memory

SRLE Split Run-Length Encoding

VLC Variable-Length Code

XOR Exclusive Or (logic function)

In overview, embodiments of the present disclosure are
concerned with an enhanced form of encoder and decoder,
and associated enhanced methods of encoding and decoding
data. Embodiments of the present disclosure are based upon
Delta encoding methods, such as an ODelta encoding
method for example, which will be described in greater
detail below, which has been further enhanced in embodi-
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ments of the present disclosure. Delta coding methods are

provided for purposes of coding audio packets, image

blocks, internet data packets, channels, video frames and so

forth, by using various mutually different spatial and tem-

poral prediction methods, and optionally a quantizer is

employed. Encoding methods of the present disclosure are

suitable for both lossless and lossy coding, and they com-

prise three main functional elements:

(1) prediction;

(i1) ODelta, or similar such as PDelta, IDelta or DDelta,
operator with optional quantizer; and

(iii) entropy encoding.

The encoding methods of the present disclosure, and
corresponding decoding methods, are susceptible to being
used in encoders and decoders respectively, as will be
described in greater detail later with reference to FIG. 5.

In the appended APPENDIX 1, there is provided a
description of an ODelta operator for DPCM style of usage.
In the present disclosure, in text prior to the APPENDIX 1,
those ODelta operators are modified to use different (local)
spatial, temporal or combinatory prediction methods. The
methods of the present disclosure are devised so that they
can be used for an entire data sequence, for individual data
frames, for individual data channels, for individual data
blocks or for individual data packets, and so forth. More-
over, methods of the present disclosure provide several
mutually different coding methods based on selected pre-
diction methods, selected ODelta operators, and selected
residual coding and compression methods.

Many other coding methods are optionally used in con-
junction with methods of the present disclosure, and these
such methods are advantageously used with block encoder
as described in APPENDIX 2 which is described in a patent
document GB2503295 which is hereby incorporated by
reference, and a block decoder as described in APPENDIX
3 which is described in a patent document GB2505169
which is hereby incorporated by reference. The selection of
a best coding method to employ to encode a given data block
is, for example, made by using RD-optimization, when, for
example, a given data channel is to be coded block-by-
block. The RD-optimization minimizes a value V of an
equation, namely:

V=D+L*R Eq. 1

wherein the distortion (D), typically, is a sum of squares
error (SE) between original and decoded values, and
wherein the rate (R) of encoded data values is typically
measured by bits. With the methods pursuant to the present
disclosure, many other coding methods are also optionally
used, for example DC methods, slide methods, multilevel
methods, DCT methods, line methods, scale methods and
database methods and so forth.

The methods pursuant to the present disclosure are ben-
eficially used for mutually different data structures present in
input data (D1) to be encoded. For example, an entire data
channel, for example a luminance channel of a planar image,
is optionally coded with the methods pursuant to the present
disclosure. The methods pursuant to the present disclosure
are simple and are susceptible to being implemented with
low complexity in devices and systems, for example using
reduced instruction set (RISC) processors which are con-
temporarily employed in low-power portable electronic
devices such as mobile telephones, cameras, and similar.
Therefore, the results provided by the methods of the present
disclosure for the entire channel can easily be compared
against other channel coding methods, for example black/
mode value channel, freeze channel, entropy coded original
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channel, and channel coding with block encoder. The selec-
tion of the best channel coding method is also beneficially
made with RD optimization. A channel coding with a block
encoder method means that the data channel is coded
block-by-block with mutually different coding methods and
in this case, one coding method is not used for the whole
data channel.

The methods of the present disclosure are optionally
susceptible to being used in lossy coding, namely with
quantized residual value coding or without residual coding,
or in lossless coding, namely with zero residual or non-
quantized residual value coding. All the earlier coded and
decoded values in an encoder and in a decoder, pursuant to
the present disclosure, can be used for prediction of current
or future data values. When data is coded losslessly by
applying encoding methods of present disclosure thereto,
then also the already processed source values, which are the
same as decoded values in lossless coding, can be used for
prediction of current or future data values in the encoder.

The most important parameters of the ODelta operator are
highValue, lowValue and wrapValue (namely, at least high-
Value-lowValue+1); this is elucidated in greater detail in
APPENDIX 1. It is also possible that the highValue and
lowValue are defined to utilize quantization. For example,
the original data contains values from 0 to 255, but it is
desired that the end result be quantized to values, for
example from 0 to 78 (relative quantization 78/255) with a
selected quality factor (for example, 30, in a case when the
values of the quality values range from ‘one’ to ‘one
hundred’, where the quality value ‘one hundred’ refers to
lossless compression.). Data offsets can also be used before
(pre-offset) or after (post-offset) utilizing an ODelta opera-
tor. Moreover, entropy encoding is beneficially executed
after the ODelta operator, because otherwise the reduced
entropy would not be fully utilized in the data encoding.

Referring to the aforementioned IDelta, DDelta and
PDelta methods, the wrapValue does no longer need to be
determined, as was needed in the ODelta method, as
described in APPENDIX 1. Therefore, as regards the afore-
mentioned [Delta, DDelta and PDelta methods, the -high-
Value' and lowValue' play an even more important role,
along with the method selection information and the even-
tual quantization information. In these cases, highValue' and
lowValue' no longer refer to a value range of final actual data
values but instead they refer to the value range of the
difference values being delivered. The lowValue' can also be
used to determine the pedestal value of the PDelta method,
in which case the maximal data value being delivered is the
result of high Value'-lowValue' as such, or possibly limited
by quantization. This quantization can be determined either
by a divisor, by a quality parameter or as a relative change
in relation to the original dynamic range. An example of
such an implementation is provided in the foregoing where
the original highValue or the highest difference highValue'
was 255 and the value range was limited and decreased by
a relative quantization value 78/255. The quantization value
of relative quantization can in this example be delivered, for
example, as a value 78 or else as value a 0.3059 (namely less
than 78/255).

The entropy encoding method used is beneficially
selected to be Range coding or SRLE Range coding, but
other entropy encoding methods can also be used, for
example Huffman coding, RLE coding, SRLE coding. When
the ODelta method described in APPENDIX 1 is used, then
the prediction value is preferably always the previous data
value and the first prediction value needs to be initialized by
selected initialization method.
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In methods pursuant to the present disclosure, the predic-
tion values can be selected differently to using only the
previous data value. Pursuant to methods of the present
disclosure, it is possible to use a prediction value that is one
selected data value or a value calculated from multiple data
values. For example, the value can be calculated from two
or more previous data values (1D), from two or more
previous data values in the neighborhood (2D, 3D, . . .),
from data value/values in the previous data block or data
packet, from data value/values in the previous data channel/
channels, from data value/values in the previous data frame/
frames, from any combination of previously mentioned data
values, and so forth.

When a prediction value for the current data value is
calculated, then the difference, or the sum, between the
original and predicted data value is calculated as the OValue.
The OValue can be quantized, or copied, to QOValue, and
then it can be given to the ODelta operator that makes a wrap
around (namely by addition and/or subtraction of
wrap Value), if the QOValue is lower than the lowValue or
higher than the highValue.

It will be appreciated that, especially when the value is
quantized, the quantization levels have to be designed so that
a wrap around and inverse wrap around can be executed
accurately, so that the wrapping operation does not change
the result of the method from positive addition (or subtrac-
tion) to negative addition (or subtraction), or vice versa. The
wrap around should neither change the result to a clearly
smaller absolute value, or to a clearly bigger absolute value.
This means that, if for example two different quantizers are
used for absolute data values, then the small and the big data
values have to be quantized with a smaller quantizer value
than the middle data values, so as to avoid a wrong inter-
pretation of data value in inverse quantization and wrap
around.

Referring next to FIG. 1, there is shown schematically a
manner in which 3D video content is split into different data
structures, such as frames, views, channels, data blocks, data
packets and individual data values. It is also optionally
possible to use additional structures, for example a group of
frames, a group of data blocks, init data blocks, and data
slices. All such mutually different structures do not need to
be separate during processing and encoding of input data
(D1) to generate corresponding encoded data (E2), pursuant
to the present disclosure. The order of data can vary, but in
the example in FIG. 1, the blocks in a given channel are
processed from left-to right and from top-to-bottom. All the
values that are already processed, namely encoded, and
optionally decoded when implementing lossy coding, can
also be used for prediction of current and future values,
because then an encoder and a corresponding decoder pur-
suant to the present disclosure can both have information
regarding the values decoded from the encoded values.

Pursuant to the present disclosure, it is often beneficial to
encode YUV channels in an order Y, U, V, and also BGR
channels in an order G, R, B or G, B, R to enable better
alternatives for temporal channel prediction in methods
pursuant to the present disclosure. Temporal channel pre-
diction is typically a very good method when a given image
is encoded into the RGB color space. Temporal channel
prediction reduces channel correlation considerably. When
the YUV color space is used, then the channel correlation is
highly reduced already because of the properties of that
color space. Moreover, when the YUV color space is used,
then the Y channel contains most of the information, which
means that the U and V channels can be coded more
efficiently.
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The methods of the present disclosure optionally have
separate sub-methods, namely algorithms, available for pro-
cessing mutually different data structures. For example, a
color channel can be coded with spatial prediction or tem-
poral prediction. Different types of temporal prediction
sub-methods can also be used. One sub-method, for
example, uses a same channel value in a similar position as
in a previous frame, whereas another sub-method uses the
same channel value in a similar position in the previous
view, and yet another sub-method uses the similar position
value from, for example, channel 0 to predict the value for,
for example, channel 2.

When temporal prediction is used, there is no need to
define any first prediction value, because every value in the
current channel has a prediction value available in the other
frames, views or channels. “Temporal kind of prediction”
can also be used for similar data blocks located spatially
earlier in a given channel. Typically, when this kind of
method is used, there are only a couple of data block
alternatives available, such that the amount of different
sub-methods is not increased excessively. This also means
that there is no need to transmit a “motion vector” kind of
block descriptor. This kind of data block descriptor can also
be optionally used, but typically the accuracy of a descriptor
is, for example, data blocks and not individual data values,
so the amount of different combinations can be highly
reduced compared to employing intra-motion vector estima-
tion.

Even if there were to be used a combination of alternative
available algorithms with a similar accuracy to which a
typical known intra/inter motion estimation method would
yield, there would still be a big benefit in employing
methods pursuant to the present disclosure, because selec-
tions made by methods of the present disclosure contain also
efficient residual coding by employing ODelta encoding.
Thus, in methods pursuant to the present disclosure, there is
no need to use separate intra/inter motion estimation for
prediction and then separately, for example a DCT method
for residual coding.

In embodiments of the present disclosure, spatial predic-
tion optionally uses mutually different prediction values. A
previous value prediction (A for X) is known technology
from ODelta techniques; see APPENDIX 1. One beneficial
method to employ in embodiments of the present invention
uses prediction value such as P=A+B-C for value X. Many
other prediction values are also optionally used, for example
2A-D or PAETH prediction described in PNG documenta-
tion. The prediction value is beneficially restricted, or oth-
erwise truncated, to a range of possible values. For example,
if a given value in a channel 0 is potentially provided with
values between 0 (lowValue) and 63 (highValue) and A=60,
B=61, C=52, then P=A+B-C=69, which is clipped, trun-
cated or saturated to a value 63 (=highValue).

If X=62, then OValue, with modified ODelta operator
method 1, is 62-63=-1. This value does not need to be
quantized, in lossless coding, and so QOValue is also -1.
Now, it will be appreciated that -1 is smaller than lowValue
(0) and, then, wrap Value (64) needs to be added to QOValue
to get 63 as the ODelta value. This value is set to a buffer for
entropy encoding purposes for encoding the value X with
this ChannelSpatialODeltaCoded method. Similar process-
ing is performed also for the other data values, and when all
the channel values are processed, whereafter the contents of
the buffer of ODelta values are compressed with, for
example, range coding, or serial run-length encoding
(SRLE) range coding, to create the output encoded data
values for the channel 0.
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It will be appreciated that, when the first row is processed,
there is only a value A available for prediction, when using
A+B-C as a prediction value, so the value A is directly used
as a prediction value. Similarly, for the first column, only a
B value is available, so the value B is used as a prediction
value. The first value, for example an uppermost, left-most
value in the channel 0 does not have any spatial value that
can be used for prediction. It is possible to use temporal
values for the first prediction value, namely if it is available
in the previous view or in the previous frame for example.
If there is no suitable temporal prediction value available,
then, for example a value 0 or a midrange value ((63-0+1)
div 2=32, or a separately delivered mode value of channel/
view/frame, can be used as the first prediction value for
channel 0. It is also possible to use different predictors with
a method and even deliver information about which predic-
tor is used for which frame, channel, block or even data
value in the encoded data (E2).

Similar methods can also be used for, for example, data
blocks. The example below illustrates how a block 2 in a
channel 2 is coded using a BlockChannel0ODeltaCoded
method that allows quantization by value 4 to be used for
corresponding encoded values, with clearly smaller quality
requirements. This quantization by value 4 means that
lowValue is 0, highValue is 15 and wrapValue is 16. Now,
the block 2 in the current channel 2 contains values as
follows, for example:

45, 48, 50, 52
46, 48, 50, 51
46, 49, 49, 50

The block 2 in channel 0 contains the following prediction
values:

36, 39, 40, 42
36, 37, 39, 41
36, 39, 39, 41

On account of temporal prediction being used, the quan-
tization of encoded values, that modifies the decoded values
of channel 2, does not affect the prediction values in channel
0, and so the process can be simplified by not taking the
quantization into account when OValues are defined. The
OValues are then as follows:

9,9, 10, 10, 10, 11, 11, 10, 10, 10, 10, 9

When the values are quantized by dividing them with
value 4, then there are thereby generated QOValues as
follows:
2,2,2,2,2,2,2,2,2,2,2,2

On account of all the values being inside the range,
namely O to 15, a wrap around is not needed for any
QOvalues, and ODelta values are then the same as QOVal-
ues. Now, it will also be appreciated that all the ODelta
values are the same and, then it is feasible to change the used
coding method from BlockChannel0ODeltaCoded method
to BlockChannel0ODeltaSame  method or to
BlockChannelOIDeltaSame method. This
BlockChannel0ODeltaSame method requires that only one
value (2) is delivered with it, which enables decoding of
block values properly in a decoder, namely in a similar
manner as done also in an encoder.

For that data block, the decoder is then issued to employ
the encoding method BlockChannel0ODeltaSame and the
value 2. Then, it creates a buffer that contains 12 (4x3 block)
values as follows:
2,2,2,2,2,2,2,2,2,2,2,2

In this example, de-quantization multiplies the values by
4, and optionally adds 1 to enable better estimation of error
inside the quantized range. When these values are de-
quantized, there are thereby generated values such as:
9,9,99999,999,9,9
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When these de-quantized values are added to prediction
values, that are similar to those in the encoder from channel
0, the block values are as follows:

45, 48, 49, 51
45, 46, 48, 50
45, 48, 48, 50

The distortion, namely errors between given original data
and corresponding decoded after an encoding-decoding pro-
cess, of values during encoding and decoding will be as:
0,0, 1,1
1,2,2,1
1,1,1,0

That distortion is caused by quantization and is quite
small. The method is very efficient, because only the
selected method and one value are required to be delivered
for a whole given 4x3 data block. If more blocks are to be
coded with the same, or substantially similar, encoding
method in the channel, then all those values can be, for
example, range-encoded in a given encoder and range-
decoded in a corresponding given decoder to enable an even
higher compression ratio, namely a ratio of: an amount of
the original or decoded data (D1)/amount of the encoded
data (E2)).

When using the aforementioned ODelta, optionally, chan-
nel 2 is encoded before channel 0, and then channel O
beneficially uses channel 2 for prediction. In this case, all the
QOValues are beneficially -2. Those values are lower than
lowValue, and therefore a wrap around (namely by addition
of wrapValue) is needed, and then all ODelta values are
equal to 14 (-2+16). Thus, aforementioned ODelta coding
employed for implementing embodiments of the present
disclosure does not increase the range or does not need any
sign bit, and for that reason, it is more efficient than a similar
known Delta coding method. ODelta coding is also more
efficient than utilization of a DC method for the difference
channel for this current data block.

Next, an example will be described that encodes spatially
a 4x3 block with BlockSpatialODeltaCoded in channel 1. In
this example case, this method uses O as a first prediction
value. The original values are in the range from 0 to 255, and
the quality is set so that the lowValue is 0, highValue is 35
and wrapValue is 36 in the encoder. Of course, in a corre-
sponding decoding phase, the values beneficially still stay in
the original range from O to 255, and thus in the decoding
phase, the lowValue is 0, highValue is 255 and wrapValue is
256. The original block is then as follows:

141, 151, 148, 137
159, 150, 152, 147
159, 154, 153, 150

The quantizer for the first 16 levels, namely for levels 0
to 15, and last 16 levels, namely levels 20 to 35, is 7; for the
middle 4 levels, namely levels 16 to 19, the quantizer is 8.
This means that all absolute difference values below 112,
namely 0 to 111, are quantized, namely divided, by a value
7. The next values until 144, namely 112 to 143, are
subtracted by a value 112, quantized by a value 8, and added
by a value 16. The last values, namely 144 to 255, are
subtracted by a value 144, quantized by a value 7, and added
by a value 20. Similarly, the de-quantization for the first 16
values, namely values 0 to 15, is performed by multiplying
each value by a value 7. The middle values from 16 to 19 are
decoded by subtracting each value a value 16 therefrom,
thereafter then multiplying each value by 8 and then adding
a value 112 to each value. The last values, namely values 20
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to 25, are decoded by subtracting a value 20 from each
value, then multiplying them by a value 7 and then adding
a value 144 to them.

The first value is 141. The prediction value was initialized
as 0, and so the OValue is 141, and the QOValue is then 19.
There is no need for a wrap around, and the ODelta value is
then also 19. This value is decoded back to the value 136
(16*743*8) without a wrap around, and that value is option-
ally beneficially used for future predictions.

The second value is 151, the prediction value based on A
is optionally used and it is 136. The OValue is 15, and the
QOValue is 2. Again, there is no need for a wrap around, and
the ODelta value is 2. This value is decoded back to value
150 (136+2*7) without employing a wrap around, and it is
optionally beneficially also used for future predictions.

The third value is 148, and the prediction value based on
A is now 150. The OValue is -2, the QOValue is 0. Again,
there is no need for a wrap around, although the OValue is
negative, but the quantized value QOValue is 0, and it is
inside the range and thus ODelta value is also 0. This value
is decoded back to value 150 (150+0) without a wrap around
being employed, and that value is also optionally benefi-
cially used for future predictions.

The fourth value is 137, the prediction value based on A
is again 150. OValue is —13. QOValue is -1. Now a wrap
around is needed and the ODelta value is —1+36=35. When
this value is decoded back, the value 1504249 is higher than
highValue, namely a value 255, and so a wrap around is
needed and the result is then 150+249-256=143, which is
optionally beneficially used for future predictions.

The fifth value is in the new row and it is 159. The
prediction can now be executed by using the value B which
is 136. The OValue is 23, the QOValue is 3. There is no need
for a wrap around, and the corresponding ODelta value is
thus also 3. The decoded value is now 136+21=157, and it
is also optionally beneficially used for future predictions.

The sixth value is 150, and it can use A+B-C as a
prediction value. The prediction value is now 157+150-
136=171. The OValue is -21, and the QOValue is -3. A wrap
around is needed, and the ODelta value is thus 33. The
decoded value needs also to be subject to a wrap around, and
then the result is 150 (1714235-256), which is also option-
ally beneficially also used for future predictions.

Processing is beneficially continued in a similar manner to
an end of the given data block, and the overall ODelta-coded
result is then as follows:

19, 2, 0, 35, 3,33,0,0,0,0,0, 1

These values are beneficially inserted into a buffer and
entropy-encoded using, for example, SRLE range coding,
together with other similarly encoded ODelta values. The
decoder is provided with information in the encoded data
(E2) regarding the method BlockSpatialODeltaCoded and
the encoded ODelta values, and the decoder is then able to
reproduce the values as:

136, 150, 150, 143
157, 150, 150, 143
157, 150, 150, 150

The distortion, namely an error between the original data
(D1) and the decoded (D3), wherein encoding and decoding
used are mutually inverse, of values after encoding and
decoding is:
5,1,-2,-6
2,0,2,4
2,4,3,0

It will be appreciated that the first value can be potentially
any value, and a good initialization estimate is beneficially
employ easily to improve the result. It is also possible to
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deliver these first values separately and improve the encod-
ing result of other values. The other values typically contain
a lot of zeroes, and also a few values close to 1, correspond-
ing to +1, and close to 35, corresponding to -1; in this
example, the highValue was 35 and the wrap Value was 36.
Sometimes, all the coded values are zeroes, and in such a
case, for example the BlockSpatialODeltaNotCoded method
is beneficially used that performs only spatial prediction, but
does not deliver any value for ODelta coding. Typically,
spatial prediction needs coded values, but temporal predic-
tion is often also operated with a constant value, namely
“Same”, or without coding values, namely ‘“NotCoded”,
instead of the all coded values, namely “Coded” method.
When methods pursuant to the present disclosure are
used, they are typically used as mutually different methods.
It is also possible to use some base method and then employ
the sub-method describing, for example, a given used tem-
poral prediction source, coding solution and so forth. In a
next example, Table 2 provides a list of mutually different
channel and block coding sub-methods. Each sub-method is
expressed, namely defined, with associated 3 bits.

TABLE 2
_ Channel and Block Coding methods

Sub-
Method Base method method
Channel_ Channel0ODeltaCoded ChannelODelta 000
Channel_Channell ODeltaCoded ChannelODelta 001
Channel_ ViewPreviousChannel0ODeltaCoded ChannelODelta 010
Channel_ ViewPreviousChannel1ODeltaCoded ChannelODelta 011
Channel ViewPreviousChannel2ODeltaCoded ChannelODelta 100
Channel_ FramePreviousODeltaCoded ChannelODelta 101
Channel_ ChannelPreviousODeltaNotCoded ChannelODelta 110
Channel__SpatialODeltaCoded ChannelODelta 111
Block_ Channel0ODeltaCoded BlockODelta 000
Block_ ChannellODeltaCoded BlockODelta 001
Block_ Channel0ODeltaSame BlockODelta 010
Block_ Channel0ODeltaNotCoded BlockODelta 011
Block_ FramePreviousODeltaCoded BlockODelta 100
Block_ BlockLeftODeltaCoded BlockODelta 101
Block_ BlockUpODeltaCoded BlockODelta 110
Block__SpatialODeltaCoded BlockODelta 111

Different channels are optionally coded by using mutually
different coding methods. For example, a given first channel
(channel 0) is coded with a block encoder, that optionally
also uses BlockODelta methods for encoding data blocks, a
given second channel (channel 1) is coded with
Channel_Channel0ODeltaCoded temporal prediction based
ODelta method, and a given third channel (channel 2) is
coded with a Channel_SpatialODeltaCoded spatial predic-
tion based ODelta method. If all the channels are coded with
the same method, for example with the spatial prediction
based ODelta method, then for example the Frame_Spatia-
10DeltaCoded method is beneficially delivered for a corre-
sponding frame, and no other coding method needs to be to
delivered for that frame, namely no channel coding methods
or block coding methods are required to be used.

Data structures which are pertinent to embodiments of the
present disclosure will next be described with reference to
FIG. 1 to FIG. 4. There are shown data structures and data
values that can be used for spatial prediction in methods of
the present disclosure. In FIG. 1, there is shown an example
of an upper-level structure, whose data consists of, for
example, three frames, wherein each frame has, for example,
two views, and each view has, for example, three channels.
Optionally, the data of the upper-level structure includes
slices, groups of data blocks, or other data structures.
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Optionally, some structures are missing, for example packets
and/or views. The prediction of data values potentially
changes considerably, due to different structures being pres-
ent or due to a choice of the processing order of values or
structures being employed. In FIG. 2, there is shown an
example channel of six blocks. An order of the blocks, for
encoding purposes is from Left-to-Right and Top-Down. In

FIG. 2, block comprises, for example, three packets,

wherein each packet has, for example, 4 values. Moreover,

in FIG. 3, there is shown an example block and its constitu-
ent elements.

Therefore, an overall example data is then: —>Data=
3*2%3%6*3%4 Values=1296 Values. A next example presents
neighborhood data values that are used for prediction. In
FIG. 4, values A to N are previous data values for a position
X. The values ‘0’ to ‘t” are, for example, previous data
values, if they are in one or more other blocks that are
processed earlier than a given current block. The previous
data packets, data blocks, channels, views and frames also
potentially contain data values that are useable for prediction
purposes. Thus, FIG. 4 is a schematic illustration of neigh-
borhood (English: “neighbourhood”) data values that are
potentially useable for performing prediction, pursuant to
the present disclosure.

Embodiments of the present disclosure described in the
foregoing provide methods which are capable of improving
data compression results by utilizing a modified version of
the ODelta operator, as aforementioned. The methods of the
present disclosure employ potentially many mutually differ-
ent prediction method alternatives and an optional quantizer
that operates properly with ODelta wrapping. The methods
of the present disclosure also employ entropy encoding to
utilize all the benefits yielded by ODelta-operated entropy
reductions. The methods are suitable for various mutually
different kinds of data structures, for example frames, chan-
nels, data blocks and data packets. There are employed well
defined coding methods for each structure, which creates a
small amount of corresponding ODelta coded data. Savings
in data communication bandwidth required to store and to
communicate the encoded data relative to that required for
corresponding un-encoded data are potentially considerable
and highly beneficial.

Aforementioned methods and embodiments are benefi-
cially implemented in respect of data encoders and data
decoders. Referring to FIG. 5, embodiments of the present
disclosure concern:

(1) an encoder 100 for encoding input data D1 to generate
corresponding encoded data E2, and corresponding meth-
ods, as aforementioned of encoding the input data D1 to
generate the encoded data E2;

(i1) a decoder 120 for decoding the encoded data E2 to
generate corresponding decoded data D3. Optionally, the
decoded data D3 is exactly similar to the input data D1,
as in lossless encoding, or the decoded data D3 is approxi-
mately similar to the input data D1, as in lossy decoding,
or the data D3 is different to the input data D1, for
example by way of a transformation, but retains substan-
tially information present in the input data D1, and
corresponding methods of decoding the encoded data E2
to generate the decoded data D3;

(iii) a codec 130 including a combination of at least one
encoder 100 and at least one decoder 120, wherein the
codec 130 is optionally implemented within a single
device or is effectively implemented between multiple
devices; for example the codec 130 is optionally imple-
mented as a broadcast system wherein there is an encoder
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100 at a first spatial location and a plurality of decoders

120 at a plurality of other spatial locations.

Modifications to embodiments of the invention described
in the foregoing are possible without departing from the
scope of the invention as defined by the accompanying
claims. Expressions such as “including”, “comprising”, to
“incorporating”, “consisting of”, “have”, “is” used to
describe and claim the present invention are intended to be
construed in a non-exclusive manner, namely allowing for
items, components or elements not explicitly described also
to be present. Reference to the singular is also to be
construed to relate to the plural. Numerals included within
parentheses in the accompanying claims are intended to
assist understanding of the claims and should not be con-
strued in any way to limit subject matter claimed by these
claims.

Appendix 1: Overview of ODelta Encoding

An overview of ODelta encoding is provided below.
There is provided for ODelta encoding and associated
technology, including an encoder 1010, a method of using
the encoder 1010, a decoder 1020, and a method of using the
decoder 1020.

The encoder 1010, for encoding input data (DA1) includ-
ing a sequence of numerical values to generate correspond-
ing encoded output data (DA2 or DA3), is characterized in
that the encoder 1010 includes a data processing arrange-
ment for applying to the input data (DA1l) a form of
differential and/or sum encoding to generate one or more
corresponding encoded sequences, wherein the one or more
corresponding encoded sequences are subjected to a wrap
around a maximum value and/or a wrap around a minimum
value, for generating the encoded output data (DA2 or
DA3).

The method of using an encoder 1010, for encoding input
data (DA1) including a sequence of numerical values to
generate corresponding encoded output data (DA2 or DA3),
is characterized in that the method includes:

(a) using a data processing arrangement of the encoder 1010
for applying to the input data (DA1) a form of differential
and/or sum encoding to generate one or more correspond-
ing encoded sequences; and

(b) using the data processing arrangement to subject the one
or more corresponding encoded sequences to a wrap
around a maximum value and/or a wrap around a mini-
mum value, for generating the encoded output data (DA2
or DA3).

The decoder 1020, for decoding encoded data (DA2, DA3
or DA4) to generate corresponding decoded output data
(DAS5), is characterized in that the decoder 1020 includes a
data processing arrangement for offset processing one or
more portions of the encoded data (DA2, DA3 or DA4),
wherein the data processing arrangement is operable to
apply a form of differential and/or sum decoding to one or
more corresponding encoded sequences of the one or more
portions, wherein the one or more encoded sequences are
subjected to a wrap around a maximum value and/or a wrap
around a minimum value, for generating the decoded output
data (DAS).

The method of using a decoder 1020, for decoding
encoded data (DA2, DA3 or DA4) to generate correspond-
ing decoded output data (DAS), is characterized in that the
method includes:

using a data processing arrangement for processing one or
more portions of the encoded data (D2, D3 or D4), wherein
the data processing arrangement is operable to apply a form
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of differential and/or sum decoding to one or more corre-

sponding encoded sequences of the one or more portions,

wherein the one or more encoded sequences are subjected to

a wrap around a maximum value and/or a wrap around a

minimum value, for generating the decoded output data

(D5).

The method of using a decoder 1020, for decoding
encoded data (DA2, DA3 or DA4) to generate correspond-
ing decoded output data (DAS), is characterized in that the
method includes:

(a) using a data processing arrangement for processing the
encoded data (DA2, DA3 or DA4) for applying decoding
to one or more portions of the encoded data (DA2, DA3
or DA4), taking into account that the encoded data (DA2,
DA3 or DA4) includes at least one encoded sequence
representing changes in sequential values of translated
data, and employs a wrap around a maximum value or a
wrap around a minimum value; and

(b) using the data processing arrangement to generate cor-
responding processed data, and to translate the one or
more portions using the at least one pre- and/or post-offset
value to generate the decoded output data (DAS).
Embodiments of the present disclosure for APPENDIX 1

will now be described, by way of example only, with

reference to the following diagrams wherein:

FIG. 6 is an illustration of a codec including an encoder and
a decoder implemented to function pursuant to the present
disclosure;

FIG. 7 is an illustration of steps of a method of encoding data
as executed in the encoder of FIG. 6; and

FIG. 8 is an illustration of steps of a method of decoding data
as executed in the decoder of FIG. 6.

When describing embodiments of the present disclosure,
following acronyms and definitions will be used, as pro-
vided in Table 3:

TABLE 3
Acronyms and definitions
Acronym Description
ADC Analog-to-digital converter
Codec Encoder and corresponding decoder for digital data
DAC Digital-to-analog converter
DB Database in Random Access Memory (RAM) or Read
Only Memory (ROM)
DC DC-component of a given image, namely a mean of the
image, namely corresponding to an average brightness
and represents a lowest spatial frequency component of
an image
RLE Run-length encoding
ROI Region of interest
ROM Read Only Memory
VLC Variable-length code
In overview, with reference to FIG. 6, the present disclo-
sure is concerned with an encoder 1010 and its associated

method of operation; beneficially, the encoder 1010 is imple-
mented as a direct ODelta encoder. Moreover, the present
disclosure is also concerned with a corresponding decoder
1020; beneficially, the decoder 1020 is implemented as an
inverse ODelta decoder. Embodiments of the disclosure
beneficially employ a direct ODelta operator which is a
bit-optimized version of the aforementioned known Delta
encoding method as well as a range-optimized version for
other data. ODelta encoding is used in computing hardware
or dedicated digital hardware that employs variable-length
data words, for example 8/16/32/64 bits, and/or employs
variable-length encoding of 8/16/32/64 bit data elements
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whose original value is expressed in a range of 1 to 64 bits,
and a corresponding encoded value is generated with 1 to 64
bits. Of course, the encoder 1010 and the decoder 1020 are,
in any case, aware of which sort of number values are
contained in data DA1, for example original data, and
therefore its definition or transmission will not be further
elucidated here. It is merely assumed that a number range
(MIN and MAX) is known, and that the data DA1 can be
utilized.

Known Delta coding methods increase the range of values
from original (MIN to MAX) to a result (MIN-MAX to
MAX-MIN). This means that it is also creating negative
values when the original data contains only positive values.
The ODelta operator pursuant to the present disclosure never
creates a value that is not in a range of corresponding
original values, and so it does not increase a used data range,
and thus is beneficially employed when executing, for
example, entropy reduction and associated data compres-
sion. For example, known Delta encoding methods operate
with streams of 5-bit data, namely in a range of values from
0 to 31, such that data values generated by such Delta
encoding methods will be in a range of =31 to +31, namely
63 values which is substantially expressible using 6 (namely,
sign bit+5 bits) bits; in contradistinction, the direct ODelta
generated values are still in a range of O to 31 when
generated from aforesaid streams of 5-bit data. Moreover,
whereas known methods of Delta encoding are not possible
to be implemented recursively, the direct, or inverse, ODelta
operator pursuant to the present disclosure is susceptible to
being implemented recursively and yet it still preserves the
used range of values. The range of values does not need to
be bit-exact, for example values of 0 to 31 are defined by 5
bits; the ODelta operator is able to use any range of values,
for example a range of values from 0 to 25, whilst still
operating properly.

In principle, the ODelta methods herewith described are
always able to function directly on a basis of an existing data
range, of which will be given an example below. The ODelta
methods can also be enhanced by delivering information
indicative of a lowest occurring number value in the data
(“lowValue™) and a highest occurring number value in the
data (“highValue”). It is to be noted that lowValue>=MIN,
and highValue<=MAX, and that these values are optional.

Two examples of direct and inverse ODelta operators
pursuant to the present disclosure will be described below.
A first example of the direct and inverse ODelta operators is
efficient and relatively simple to implement, for example in
electronic hardware and/or computing hardware operable to
execute one or more software products recorded on non-
transient (non-transitory) machine-readable data storage
media.

When implementing direct or inverse ODelta operators
pursuant to the present disclosure, beneficially all of an
original sequence of data values are positive and the lowest
value is 0. Optionally, some offset value, namely a pre-offset
value or a post-offset value, can be employed to shift the data
values so that they are all positive in value and the lowest
value is “0”. The ODelta operator pursuant to the present
disclosure is susceptible to being employed with all types of
data in a direct manner; it is typically capable of providing
data compression, namely reducing communicated data rate,
because, when the offset value is added to all values or
subtracted from all values, the range of data values might be
defined using fewer bits. For example, original data values,
prior to an application of the direct or inverse ODelta
operator, are in a range from —11 to +18; such a range can
be translated to a range of 0 to 29 by using an offset value
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of +11 and the translated range thereafter described by
5-bits. When such a pre-offset value or post-offset value is
not employed, the original data values require at least 6 bits
to describe them, and often, in practice, a full 8-bit signed
byte is employed for convenience.

A similar optimization of data range is also possible when
using a generalized direct or inverse ODelta operator. Thus,
if the direct or inverse ODelta operator, or some other
method, creates the data values that can be presented with an
offset value smaller than the full range of values, then that
range optimization can be implemented in any phase in the
ODelta encoding method. When the offset value, whether
negative or positive in sign, is used, it has also to be
delivered from the encoder 1010 to the decoder 1020 as
elucidated later with reference to FIG. 6, FIG. 7 and FIG. 8.

The direct ODelta operator is susceptible to being imple-
mented in a 1-bit manner, for example for encoding the
original data DA1 in a bit-by-bit manner; in such a 1-bit
manner, a method 1 and a method 3, as will described in
greater detail below, create a value “0” when there is no
change in bit values in original data DA1 in FIG. 6, and a
value “1” when a change in bit values in the original data
DAT1 occurs. The prediction for the first bit in the original
data is optionally a value “0”, and so the value of the first bit
in the original data DA1 is preserved. It is also alternatively
optionally possible to employ a predicted value first bit in
the original data as a value “1”, but such a choice does not
provide any coding benefits; for this reason, no selection
needs to be delivered when the prediction is optionally
always assumed to be a value “0” by default for 1-bit data,
namely a pre-defined value “0” is employed by the encoder
1010 and the decoder 1020, thereby avoiding a need for this
prediction to be communicated and thus resulting in
improved data compression.

An example of direct ODelta encoding pursuant to the
present disclosure will now be described. An exemplary
original sequence of bits, namely twenty seven bits, includ-
ing seventeen “I’s” and twenty “0’s”, is provided in Equa-
tion 1 (Eq. 1) as follows:

01010110010001010000000000

01111111111 Eq. 1

whose entropy E is calculable from Equation 2 (Eq. 2):

E=17*log,o(37/17)+20%(37/20)=11.08523 Eq. 2

A number of bits, namely Min_bit, required to code the
entropy E in Equation 2 (Eq. 2) is calculable from Shannon’s
source coding theorem, as described in documents P7 and P8
of Table 4, as provided in Equation 3 (Eq. 3):

Eq. 3

Min_bits = =36.82 bits

log;,(2)

When the original sequence of bits is subject to a direct
ODelta operator as aforementioned, namely the method 1
and the method 3, there is generated a sequence of bits as
follows, including thirty seven bits of which there are
thirteen “1’s” and twenty four “0’s™:

01111101011001111000000000

01000000000 Eq. 4
whose entropy E is calculable from Equation 5 (Eq. 5):

E=13*log,0(37/13)+20*(37/24)=10.41713. Eq. 5

which is expressible in a minimum number of bits, namely
Min_bits, according to Equation 6 (Eq. 6):
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Eq. 6

Min_bits = = 34.60 bits

E
log;4(2)

The sequence of bits in Equation 4 (Eq. 4) is beneficially
subject to further encoding to achieve data compression, for
example using at least one of: run-length encoding (RLE),
Huffman coding, arithmetic encoding, range encoding,
Entropy Modifier encoding or SRLE encoding.

The ODelta operator reduces an amount of bits required
to represent the original data DA1 when its associated
entropy coding method is applied, for example RLE or
SRLE is used for the operated data, for example as in
Equation 4 (Eq. 4), instead of the original data, for example
as in Equation 1 (Eq. 1); this 1-bit direct ODelta operator,
namely the method 1 and the method 3, creates “1’s” when
there are a lot of changes in the original sequence of bits in
Equation 1 (Eq. 1), and it generates “0’s” when there is a
long stream of mutually similar bits in the original sequence
of bits in Equation 1 (Eq. 1).

The inverse version of the ODelta operator, namely
inverses of the method 1 and the method 3, changes a bit
value from a value “0” to a value “1”, or from a value “1”
to a value “0” as appropriate, when there is a value “1” in
the encoded stream of data, namely in the data DA2, and
does not change the bit value when there is a “0” value in the
encoded stream of data DA2. When this ODelta operation is
executed for the direct ODelta-operated bit stream of data
DAZ2, the original stream of data DA is regenerated as the
decoded data DAS; however, as aforementioned, additional
coding such as VLC or Huffman coding is beneficially
employed, which also needs to be taken into account; this
means that data DA3 is generated from the data DA2 using
a forward operation of entropy encoder and data DA4 is
generated from the data DA3 using an inverse operation of
entropy decoder.

Beneficially, the original stream of data DA1 is subdi-
vided into two or more sections prior to encoding being
applied thereto. Such subdivisions provide an opportunity
for more optimization to be employed when encoding the
original stream of data DA1. For example, such subdivision
is beneficial because changeable sequences in the data DA1
generate more “1’s” when directly ODelta encoded, namely
utilizing the method 1 and the method 3, whereas flat
unchangeable sequences, namely “flat” sequences, create
more “0’s”, for example desirable for subsequent VRL
encoding or Huffman encoding, so entropy E can be reduced
for the entire bit stream constituting the data DA1 by
dividing it into a plurality of sections which can be sepa-
rately encoded as aforementioned.

An example of direct ODelta encoding pursuant to the
present invention will next be described when a plurality of
sections are employed which are mutually separately
encoded. A first section including a sequence of original
single bits includes sixteen bits in total, namely seven “1’s”
and nine “0’s”, as follows in Equation 7 (Eq. 7):

0101011001000101 Eq. 7

wherein H(X)=4.7621 and B=15.82; “H” denotes entropy
and “B” denotes Max_bit. When the Equation 7 (Eq. 7)
sequence of original bits is subject to a direct ODelta
operator, a sequence of corresponding transformed bits is
provided as in Equation 8 (Eq. 8):

0111110101100111
wherein H(X)=4.3158 and B=14.34.

Eq. 8
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A second section including a sequence of original single
bits includes as follows in Equation 9 (Eq. 9):

000000000001111111111 Eq. 9

wherein H(X)=6.3113 and B=20.97. When Equation 9 (Eq.
9) sequence of original bits is subject to a direct ODelta
operator, a sequence of corresponding transformed bits is
provided as in Equation 10 (Eq. 10):

000000000001000000000 Eq. 10

wherein H(X)=1.7460 and B=5.80. In these examples, as
aforementioned, H(X) is representative of entropy E, and B
is representative of a minimum number of bits required for
coding.

The best compression in this example from Equation 7
(Eq. 7) and Equation 10 (Eq. 10) is achieved when both
sections are separately subjected to a direct ODelta operator
(namely encoding to 14.34 bits+5.80 bits=20.14 bits in
total); this requires less bits than the 36.82 bits that were
originally required, namely direct ODelta-operated bits
requiring 34.60 bits, or the original number of bits required
after splitting (=15.82 bits+20.97 bits=36.79 bits). Benefi-
cially, splitting of an original stream of bits in the data DA1
into sections is executed automatically by analyzing entropy
E of the original data DA1 and the corresponding entropy H
of the modified data, namely as included in the data DA2,
piece-by-piece.

Data compression is optionally implemented in a coarse
manner merely by dividing portions of the data DAI1 to a
new section to be encoded, when there are multiple long run
sections available in the data DA1, provided that there is a
big enough area of data wherein bit values change rapidly
along the sequence. Optionally, some sections of the data
DA1 are encoded without employing the direct ODelta
operator, for example if there is a long run of mutually
similar bits with relatively few individual different bits
therebetween; in such case, the direct ODelta operator does
not impart significant benefit for data compression purposes.

Splitting the data DA1 into smaller sections has a disad-
vantage of generating an additional overhead which con-
tributes data to the encoded data DA2. Such overhead
includes, for example, information indicative of the amount
of data bits or data bytes associated with every new section.
However, it is always found to be necessary to transmit at
least a certain amount of overhead data values, and thus
there is only one extra overhead data value when a given
data is split into two sections of data.

To achieve an encoded bit stream that can later be
decoded, entropy encoding is beneficially implemented after
the direct ODelta operator, for example VL.C, Huffman
coding, Arithmetic coding, range coding, RLE, SRLE, EM
and similar. It is easier and more computationally efficient to
execute optimization computations based on calculated
entropy E and minimum bit estimation values in comparison
to actual data encoding. Such an order of execution enables
a considerable speed optimization, and often achieves an
optimal data compression result in the encoded data DA2.
Alternatively, it is feasible to execute entropy optimization
in such a way that an original bit, alphabet, number, byte and
word data, namely in the data DA, is first coded with some
other method to generate an entropy-optimized bit stream,
and thereafter the direct ODelta operator is used to modify
the entropy-optimized bit stream to provide corresponding
encoded data, namely the data DA2. Moreover, this ODelta
operated data can still be encoded with other encoding
methods from the data DA2 to generate the data DA3.



US 10,531,110 B2

27

The generalized direct ODelta operator employs a param-
eter that describes a range of values used in the data DA1,
namely a value or number of bits that are needed to present
the values. Moreover, the ODelta operator is employed in a
method that enables the use of positive and negative offset
values, in other words positive and negative “pedestal”
values. For example, if data DA1 is presented with seven
bits, namely has values from “0” to “127” supported, but it
contains only values in a range of “60” to “115”, then, when
an offset value of -60 is applied to the data DA1, there is
thereby generated translated data having values in a range of
“0” to “55” that can also be represented as values containing
only six bits, namely a degree of data compression is thereby
feasible to achieve. The generalized direct ODelta operator
thus improves results when a full range of data values is
present in the data DA1, namely represented in seven bits
and conventionally represented by 8-bit bytes.

Pursuant to the present disclosure, direct ODelta values,
namely the method 1, are susceptible to being computed
using a procedure as described by an excerpt of example
software code as follows for data that has only positive
values (lowValue=MIN=0 and highValue=MAX=127,
wrap Value=127-0+1=128):

wrapValue = power(2, bits) = power(2, 7) = 128
prediction Value = (lowValue + highValue + 1) div 2 = (wrapValue + 1)
div 2 + lowValue = 64
for all pixels
begin
if(originalValue >= predictionValue) then
ODeltaValue = originalValue — predictionValue
else
ODeltaValue = wrapValue + originalValue — predictionValue
predictionValue = originalValue
end

An example will now be provided to elucidate further the
aforesaid ODelta operator. An original sequence of values is
as follows in Equation 11 (Eq. 11):

65, 80, 126, 1, 62, 45, 89, 54, 66 Eq. 11

Corresponding Delta coding values are as follows in
Equation 12 (Eq. 12):

65, 15, 46, -125, 61, =17, 44, =35, 12 Eq. 12

Corresponding direct ODelta coding values are as follows
in Equation 13 (Eq. 13):

1, 15, 46, 3, 61, 111, 44, 93, 12 Eq. 13

wherein wraparound within a parameter wrapValue is
employed.

An inverse ODelta operator, namely the method 1, is
useable for generating inverse ODelta values, for example as
implemented by example software code as follows:

wrapValue = power(2, bits) = power(2, 7) = 128
predictionValue = (wrapValue + 1) div 2 + lowValue = 64
for all pixels
begin

ODeltaValue = originalValue + predictionValue

if (ODeltaValue >= wrapValue) then

ODeltaValue = ODeltaValue — wrapValue

predictionValue = ODeltaValue

end

When this software code is executed and applied to
Equation 13 (Eq. 13), it generates values as provided in
Equation 14 (Eq. 14):

65, 80, 126, 1, 62, 45, 89, 54, 66 Eq. 14
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This example uses wrapValue as a power-of-two value.
This is not mandatory and the wrapValue can also be any
value that is larger than a highest data value, or value larger
than the used range, if negative values are also available, or
range is modified by pre-offset in a given sequence of data.
There will be a further example later showing this feature.

To summarize the foregoing with reference to FIG. 6, the
present disclosure is concerned with the encoder 1010 and
the decoder 1020. Optionally, the encoder 1010 and the
decoder 1020 are employed in combination as a codec
indicated generally by 1030. The encoder 1010 is operable
to receive original input data DA1 which is encoded using,
for example, a direct ODelta method to generate correspond-
ing encoded data DA2 or DA3. The encoded data DA2 or
DA3 is optionally communicated via a communication
network 1040 or stored on data storage media 1050, for
example a data carrier such as an optical disc read-only-
memory (ROM) or similar. The decoder 1020 is operable to
receive the encoded data DA2 or DA3, for example
streamed via the communication network 1040 or provided
on the data storage media 1050, and to apply an inverse
method, for example an inverse ODelta method, to generate
corresponding decoded data DAS, for example substantially
similar to the original data DA1. The encoder 1010 and the
decoder 1020 are beneficially implemented using digital
hardware, for example computing hardware which is oper-
able to execute one or more software products, for example
codes as provided as example embodiments in this descrip-
tion. Alternatively, the encoder 1010 and/or the decoder
1020 are implemented using dedicated digital hardware.

The ODelta method, as executed in the encoder 1010,
employs steps as depicted in FIG. 7. In an optional first step
1100, the input data DAI1 is processed to find a range of
values of its data elements. In an optional second step 1110,
from the range of values, an offset, namely a pre-offset, is
computed for translating the data elements to a positive
regime to generate a corresponding set of translated ele-
ments. In a third step 1120, the elements, optionally trans-
lated in the second step 1110, are then subject to direct
ODelta encoding to generate corresponding ODelta encoded
values. In a fourth step 1130, the ODelta encoded values and
the optional offset value, minimum value (lowValue), and/or
maximum value (highValue) are then separately encoded,
for example using run-length encoding (RLE), range coding,
or Huffman coding, to generate the data DA3 from data
DA2. The offset value, minimum value (lowValue), and/or
maximum value (HighValue) are not always compressible,
thus requiring it to be delivered using a suitable amount of
bits from the encoder 1010 to decoder 1020. Moreover, the
offset value, minimum value (lowValue), and/or maximum
value (highValue) are optional features for the direct ODelta
operator; for example, the offset value, in certain situations
has a value “0”, lowValue has a value MIN, and highValue
has a value MAX, namely no translation is applied and the
full range is used. Especially, when the direct ODelta
operator is implemented for 1-bit data, namely for encoding
bit-by-bit, it does not need an offset value at all, and then
steps 1100 and 1110 are always ignored. When an offset
value is also used in the step 1110, the range value presenting
the highest and lowest values should be updated within it.
The number of different values, namely wrap Value, should
be known also by the decoder 1020, or otherwise the
encoder 1010 should deliver it to the decoder 1020 within
compressed data. Optionally, the default wrapValue (=high-
Value-lowValue+1) is used in encoder and in decoder.
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Optionally, at least one of the encoder 1010 and the decoder
1020 operate in a recursive mannet, for example to find an
optimal manner in which to subdivide the input data DA1
into sections for encoding so as to provide for optimal
compression of the data DA1 to generate the encoded data
DA2.

The inverse ODelta method as executed in the decoder
1020 employs steps as depicted in FIG. 8. In a first step
1200, the data DA2/DA3 or DA4 is subjected to inverse
encoding to that which is employed in the aforesaid step
1130 to generate decoded ODelta data, wherein the decoded
ODelta data has ODelta-encoded values and optionally have
a separate offset value. In a second step 1210, the ODelta
encoded values are decoded to generate a sequence of data
elements. In a third step 1220, the sequence of data elements
are translated using the optional pre-offset value to generate
the decoded data DAS; in certain situation, such translation
is set to a value “0”, namely no translation is effectively
applied. Again, it is possible to execute the method without
needing to employ an offset value, for example when
performing 1-bit encoding, namely bit-by-bit encoding,
thereby enabling the step 1220 to be ignored. Furthermore,
the decoder 1020 should also know the wrapValue to be able
to decode data elements received thereat in a proper manner.

By employing the offset to achieve only positive values,
more efficient data compression in the data DA2 or DA3 is
capable of being achieved. If all the data values are already
positive values, there is no need to add any offset value. Of
course, negative offset values are optionally employed to
reduce the available range, as shown in the next example,
but it is not mandatory.

The methods in FIG. 7 and FIG. 8 can be optionally
further optimized by using only the available values subject
to ODelta coding. Such optimization requires that used
values are known. For example, in an example in the
foregoing, only values from 1 (=original minimum) to 126
(=original maximum) are present in the original data set
DA1. The offset value is then 1 (—>lowValue=original
minimum-offset=1-1=0 and highValue=original maxi-
mum-offset=126-1=125). When the pre-offset value has
been reduced from the original data DA1, following values
are thereby generated in Equation 15 (Eq. 15):

64,79, 125, 0, 61, 44, 88, 53, 65 Eq. 15

From Equation 15 (Eq. 15), the maximum value of 125 is
determined (highValue=original max-offset=126-1=125),
suich  that the  “number” (=maximum  Delta
value=highValue-lowValue) can now be 125, or wrap Value
can be at smallest 126 (=number+1=highValue-lowValue+
1). Now, it is necessary to store and/or deliver these values
and then the previous example can be modified by changing
process values as follows:

wrapValue=126 (“0” to “125”=>126 different values)
prediction Value=(highValue+lowValue+1) div
2=(wrapValue+1) div 2+lowValue=63

Corresponding direct ODelta operator values are provided
in Equation 16 (Eq. 16):
1,15, 46, 1, 61, 109, 44, 91, 12 Eq. 16

It will be appreciated that all “negative Delta values™ are
now reduced by a factor of 2 (namely=range change=128-
126). Similarly, in the decoder 1020, the process values have
to be changed as follows:

wrapValue=126

predictionValue=(wrapValue+1) div 2+lowValue=63
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Corresponding inverse ODelta values are as follows in
Equation 17 (Eq. 17):
64,79, 125, 0, 61, 44, 88, 53, 65
When the pre-offset value is added to Equation 17 (Eq.
17), a following result in Equation 18 (Eq. 18) is obtained

corresponding to original data in Equation 15 (Eq. 15),
namely:

Eq. 17

65, 80, 126, 1, 62, 45, 89, 54, 66 Eq. 18

In this example, the range of values is nearly full, so there
is a relative modest benefit derived from applying the direct
ODelta operator with offset and maximum values (high-
Value). However, a reduction in entropy E can still be
achieved, namely resulting in fewer values in a frequency
table or in a code table when they are properly delivered.
Greatest benefits can be achieved when the range is less
used.

An example embodiment of a practical 1-bit direct and
inverse ODelta method, namely the method 1 or the method
3, of encoding and decoding data will now be provided by
way of executable computer software code; the method
employs the aforesaid direct and inverse ODelta operators,
namely the method 1 or the method 3. The software code is
operable, when executed upon computing hardware, to
process bits from one byte buffer to another byte buffer. In
the software code, GetBit, SetBit and ClearBit functions
always update a HeaderBits value. A HeaderIndex value is
also updated when a next bit will be in a next byte.
Optionally, the software code can be optimized, so that only
one set of HeaderIndex and HeaderBits values are used for
source and destination, such that values are updated only
when a given bit is written to the destination buffer.

procedure EncodeODeltalu(APtrSre : PByte; ASrcDstBitLen : PCardinal;
APtrDst : PByte)
var
iSrcHeaderIndex, iSrcHeaderBits, ilndex,
iDstHeaderIndex, iDstHeaderBits : Cardinal;
bBit, bLastBit : Boolean;
begin
// Reset offsets
iSrcHeaderIndex := 0;
iSrcHeaderBits := 0;
iDstHeaderIndex := 0;
iDstHeaderBits := 0;
// Initialise delta value
bLastBit := False;
// Go through all bits
for iIndex := 0 to ASrcDstBitLen™-1 do
begin
// Read bit
bBit := GetBit(APtrSre, @iSrcHeaderIndex, @iSrcHeaderBits);
// Set destination bit if current source bit is different than
previous source bit
if (bBit <> bLastBit) then
begin
SetBit(APtrDst, @iDstHeaderIndex, @iDstHeaderBits);
bLastBit := bBit;
end
else ClearBit(APtrDst, @iDstHeaderIndex, @iDstHeaderBits);
end;
end;
function DecodeODeltalu(APtrSre :
APtrDst : PByte) : Boolean;
var

PByte; ASrcDstBitLen : PCardinal;

iSrcHeaderIndex, iSrcHeaderBits, ilndex,
iDstHeaderIndex, iDstHeaderBits : Cardinal;
bBit, bLastBit : Boolean;

begin
// Reset offsets
iSrcHeaderIndex := 0;
iSrcHeaderBits := 0;
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-continued

iDstHeaderIndex := 0;
iDstHeaderBits := 0;
// Initialise delta value
bLastBit := False;
// Go through all bits
for iIndex := 0 to ASrcDstBitLen ™1 do
begin
// Read bit
bBit := GetBit(APtrSre, @iSrcHeaderIndex,
@iSrcHeaderBits);
// Change bit value if source bit is true
if (bBit = True) then
begin
if (bLastBit = True) then
bLastBit := False
else bLastBit := True;
end;
// Set destination bit based on bit value (True
or False)
if (bLastBit) then
SetBit(APtrDst, @iDstHeaderIndex,
@iDstHeaderBits)
else ClearBit(APtrDst, @iDstHeaderIndex,
@iDstHeaderBits);
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end;
end;

The aforementioned direct and inverse ODelta operators,
namely the method 1 or the method 3, are beneficially
employed to compress any type of data that is in a digital
format, for example video data, image data, audio data,
graphics data, seismological data, medical data, measure- ;
ment values, reference numerals and masks. Moreover, one
or more analog signals are also compressible using the direct
ODelta operator when firstly converted to corresponding
digital data, for example by using ADC’s before the com-
pression. When the inverse ODelta operator is used, DAC’s
can be used after the operation, if it is desired that the data
be converted back to one or more analog signals. However,
it will be appreciated that the direct ODelta operator by itself
is not usually effective at compressing data, but is capable of
providing effective data compression when employed in
combination with other encoding methods, for example
variable-length coding (VLC), arithmetic coding, range cod-
ing, run-length encoding, SRLE, Entropy Modifier and so
forth. These encoding methods are used for data DA2 after
the direct ODelta operator is employed in the encoder 1010.
The encoded data DA2 has to be correspondingly decoded
back before the resulting data is delivered to the inverse
ODelta operator implemented in the decoder 1020. The
ODelta operator can also be employed with other types of
entropy modifiers. In certain situations, the direct ODelta
operator can result in an increase in entropy E, and data
compression algorithms are beneficially operable to employ
the direct ODelta operator selectively for use in encoding
data only when it provides a beneficial data compression
performance, for example it is employed selectively based
upon a nature of data to be compressed, for example applied
selectively to selected portions of the input data DA1 as
aforementioned.

The direct ODelta operator has been devised, for example,
to be employed in combination with a block encoder as
described in a U.S. patent application Ser. No. 13/584,005,
whose contents are hereby incorporated by reference, and
the inverse ODelta operator has been devised to be
employed in combination with a block decoder as described
in a U.S. patent application Ser. No. 13/584,047, whose
contents are hereby incorporated by reference. Optionally,
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the direct ODelta operator and inverse ODelta operator are
beneficially employed in combination with a multilevel
coding method as described in U.S. patent application Ser.
No. 13/657,382, whose contents are hereby incorporated by
reference. Beneficially, all types of 1-bit data, for example
present in the data DAI1, that include binary states are
subject to the 1-bit version of the direct ODelta operator to
generate corresponding transformed data, which is then
thereafter subjected to actual entropy encoding to generate
the encoded data DA2 or DA3. Optionally, as aforemen-
tioned, the direct ODelta operator is employed selectively
depending upon a nature of the original data DA1.

Optionally, it is feasible to employ other methods of
modifying entropy of data before or after the direct ODelta
operator. For example, the direct ODelta operator can also
be used directly for multi-bit data within a generalized
version of the direct ODelta operator. Moreover, the afore-
said 1-bit version of the direct ODelta operator is benefi-
cially employed for multi-bit data, after all used bits are first
put into a serial sequence of bits.

When multiple methods are employed for data compres-
sion in conjunction with the direct ODelta operator in the
encoder 1010, corresponding inverse operations are per-
formed in reverse order in the decoder 1020, for example:

The following sequence of methods are employed in the
encoder 1010:

[data DA1]=>direct ODelta (method 2)
=>VLC-

=>EM

=>Arithmetic coding

=>[data DA3] Eq. 19

The following inverse sequence of methods are employed
in the decoder 1020:

[data DA3]=>inverse Arithmetic coding
=>inverse EM

=>inverse VLC

=>inverse ODelta (method2)

=>[data DAS]

wherein “VLC” denotes variable-length coding, and “EM”
denotes entropy modifying.

The ODelta operator as described in the foregoing is
reversible and lossless. Moreover, the ODelta operator is
optionally susceptible to being implemented specifically for
1-bit data streams, for example when performing bit-by-bit
encoding, but also for other data. Beneficially, all types of
data are susceptible to being processed using a generalized
version of the direct ODelta operator. Beneficially, the direct
ODelta operator is employed when data is to be compressed,
and a corresponding inverse ODelta operator is employed
when compressed data is to be decompressed. Optionally,
when the ODelta operator is employed, the direct ODelta
operator and its corresponding inverse operation are
employed in a reverse order; in other words, the inverse
ODelta operator is performed temporally first on an original
bit stream, thereafter followed by the direct ODelta operator,
for regenerating the original bit stream. One ODelta operator
increases entropy and the other ODelta operator decreases
entropy. It is a very rare case that the direct ODelta operator
should not modify entropy at all, and then neither inverse

Eq. 20
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ODelta operator modifies entropy. It is to be noted that the
when the direct and inverse ODelta operators are used, for
example for the method 1, then the inverse order of these
operations are similar to the normal order of the method 4.
Similar change of order is possible also with the method 2
and the method 3.

In the 1-bit version, namely for encoding data in a
bit-by-bit manner, the direct ODelta operator beneficially
starts without prediction, namely it assumes by default a
prediction of an initial “0” value. In a generalized version,
the ODelta operator starts with a prediction that represents
half of a usable data range; for example, if 5-bits are used for
input data values in the data D1, namely thirty two different
values in a range from “0” to “31”, the prediction value is
32/2=16. Beneficially, the ODelta operator needs to be
provided with information regarding a useable data range for
data elements to be processed using the operator.

Embodiments of the disclosure described in the foregoing
make it possible to reduce the entropy E that is presented in
the data DA1 as bits or any digital values. The direct ODelta
operator nearly always provides improved entropy reduction
as compared to Delta coding. Only the case where Delta
coding is used together with byte wraparound, and the
difference ODelta operation with original prediction
(method 1) uses the wvalues wrapValue=256,
lowValue=MIN=0, and highValue=MAX=255, produces the
identical output result within it. If another direct ODelta
method is used, or if the entire data range is not available in
the input data, then the ODelta operator produces better
results by to sending the selected method or lowValue and/or
highValue, namely that modifies also wrapValue automati-
cally. Smaller entropy enables data to be compressed with
higher data compression ratios. Higher data compression
ratios enable smaller capacity data storage to be employed,
and also enable slower data bandwidths to be employed
when communicating compressed data, with corresponding
reduction in energy consumption.

In the foregoing, it will be appreciated that a form of
difference and sum computation is executed in the encoder
1010, and a corresponding inverse computation is performed
in the decoder 1020. It is also possible to use another
prediction method used in the encoder 1010, and a corre-
sponding inverse prediction is then performed in the decoder
1020. This means that there are actually at least four
different direct ODelta methods as well as at least four
corresponding inverse ODelta methods. A detailed and exact
description of these methods follows. Optionally, the com-
putations are performed in a recursive manner to obtain a
higher degree of data compression in the encoded data DA2
(or DA3). When executing such recursive computations, a
changing number range is employed as a function of how
many recursive computations have been employed. For
example, in the encoder 1010, a following sequence of
computations is performed on the data DA1 to generate the
encoded data DA2 (or DA3):

[Data DA1] edirect ODelta (method 3)=>
edirect ODelta (method 3)=>

eEM=>

edirect ODelta (method 1)=>

eVLC [Data DA3] Eq. 21
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and corresponding inverse operations are performed in the
decoder 1020:

[Data DA3] dVLC=>

dinverse ODelta (method 1)=>
dEM=>

dinverse ODelta (method 3)=>

dinverse ODelta (method 3) [Data DAS] Eq. 22

Each time data is operated upon in these four methods, as
denoted by Equations 21 (Eq. 21 corresponding to the
method 1), Equation 22 (Eq. 22 corresponding to the method
2), Equation 23 (Eq. 23 corresponding to the method 3), and
Equation 24 (Eq. 24 corresponding to the method 4), it is
optionally possible to try to use all methods, because one of
these methods might decrease entropy of data being pro-
cessed more than the other methods. Upon optimizing the
use of methods within the encoder 1010 and/or the decoder
1020, it is advantageous to use the same or different methods
as many times and as long as the selected method, or
methods, decrease entropy, as compared to the amount of
information in the data required. Thus the methods 1 to 4 are
useable for encoding numerical values, wherein “numerical
values” encompasses in its definition 1-bit data as well as
non-binary numbers, as in encoded streams of bits in a
bit-by-bit manner, as well as multi-bit values

The difference operation represents a remainder of con-
secutive number values; correspondingly, the sum operation
represents a sum of consecutive number values. These
operations as executed in the encoder 1010 have their own
corresponding inverse operations in the decoder 1020. The
difference or sum can be computed based on the current
input value and the previous input or result value that is used
as a prediction value. Other prediction values could also be
used and they might, for example, use earlier input and
output values in the encoder 1010 to create the prediction as
long as it is reversible to do so also in the decoder 1020.

None of such methods compress data significantly within
the encoder 1010 and decoder 1020, but all methods are
beneficially employed to reduce entropy, so that some other
compression method can then compress the entropy-reduced
data more efficiently. Such other compression method is
optionally at least one of: Huffman coding, arithmetic cod-
ing, range coding, RLE coding, SRLE coding, entropy
modifier coding. However, for all methods, it is necessary to
communicate a few number values with which the operation
and its inverse operation can always be executed exactly, for
example if lossless compression and subsequent lossless
decompression of data is to be achieved. Of course, the
encoder 1010 and the decoder 1020 have information
regarding which sort of number values are contained in the
input data DA1. Beneficially, it is assumed that the number
range, namely defined by MIN and MAX, is known. In
principle, the methods can always function directly on the
basis of an existing data range. The number values that the
operations need are the lowest occurring number value
(lowValue) and the highest occurring number value (high-
Value); lowValue is greater than or equal to MIN, and
highValue is less than or equal to MAX.

On a basis of these values, other necessary number values
can be derived. Beneficially, these values are communicated
in various forms, wherein missing values are beneficially
computed. For example, if two values from a set
[“lowValue”, “highValue”, “number”] are known, the “num-
ber” is [highValue-lowValue], then a third value can be
computed therefrom. Omitting certain values in the data
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DAZ2, and then deriving them in the decoder 1020 is capable
of providing greater data compression in the data DA2.

In addition to these values, a number P is required which
can be used as a previous value in computation of the first
value, namely “prediction”. A value between “0” and a
“number” value can always be chosen for the number P,
namely “prediction”. Moreover, the aforesaid operations
need to be provided with the value “wrapValue”, in order to
function recoverably when decoding the data DA2/DA3 or
DA4 in the decoder 1020, namely to shrink a value range
that the operations generate to be as small as possible.
However, this “wrapValue” has to be larger than the “num-
ber”, and beneficially it will have a value “number’+1.
Optionally, depending a nature of the data DA1, the first
“prediction” value can be chosen to be “0” as aforemen-
tioned, for example if the data DA1 is assumed to contain
more small values than larger ones; alternatively, the first
“prediction” value can be chosen to be equal to the “num-
ber”, if the data DA1 is assumed to contain more larger
values than smaller ones. In an event that an assumption is
not made for the magnitude of values, then it is desirable to
use a value “(wrapValue+1) div 2+lowValue” for the “pre-
diction” value.

Examples of operations performed in computing hard-
ware when implementing embodiments of the present dis-
closure will now be described.

In the encoder 1010, the first direct difference operation,
namely the method 1, is beneficially implemented as fol-
lows; for all data values, an output value, namely “result”,
that corresponds to the input value, namely “original” value,
is computed in a software loop:

result=original-prediction

if result<lowValue then result=result+wrapValue

Finally, the prediction value for the next input is set to be
equal to the current input, namely:

prediction=original

In the decoder 1020, the first inverse difference operation,
namely the method 1, is beneficially implemented as fol-
lows: for all data values, an output value, namely “result”,
that corresponds to the input value, namely “original” value,
is computed in a software loop:

result=original+prediction

if result>highValue then result=result-wrapValue

Finally, the prediction value for the next input is set to be
equal to the current result, namely:

prediction=result

In the encoder 1010, the second direct difference opera-
tion, namely the method 2, is beneficially implemented as
follows; for all data values, an output value, namely “result”,
that corresponds to the input value, namely “original” value,
is computed in a software loop:

result=original-prediction

if result<lowValue then result=result+wrapValue

Finally, the prediction value for the next input is set to be
equal to the current result, namely:

prediction=result

In the decoder 1020, the second inverse difference opera-
tion, namely the method 2, is beneficially implemented as
follows: for all data values, an output value, namely “result”,
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that corresponds to the input value, namely “original” value,
is computed in a software loop:

result=original+prediction

if result>highValue then result=result-wrapValue

Finally, the prediction value for the next input is set to be
equal to the current input, namely:

prediction=original

In the encoder 1010, the first direct sum operation, namely
the method 3, is beneficially implemented as follows: for all
data values, an input value, namely “result”, that corre-
sponds to the input value, namely “original”, is computed in
a software loop as follows:

result=original+prediction

if result>highValue then result=result-wrapValue

Finally, the prediction value for the next input is set to be
equal to the current input as follows:

prediction=original

In the decoder 1020, the first inverse sum operation,
namely the method 3, is beneficially implemented as fol-
lows: for all data values, an input value, namely “result”,
that corresponds to the input value, namely “original”, is
computed in a software loop as follows:

result=original-prediction

if result<lowValue then result=result+wrapValue

Finally, the prediction value for the next input is set to be
equal to current result, namely:

prediction=result

In the encoder 1010, the second direct sum operation,
namely the method 4, is beneficially implemented as fol-
lows: for all data values, an input value, namely “result”,
that corresponds to the input value, namely “original”, is
computed in a software loop as follows:

result=original+prediction

if result>highValue then result=result-wrapValue

Finally, the prediction value for the next input is set to be
equal to the current result as follows:

prediction=result

In the decoder 1020, the second inverse sum operation,
namely the method 4, is beneficially implemented as fol-
lows: for all data values, an input value, namely “result”,
that corresponds to the input value, namely “original”, is
computed in a software loop as follows:

result=original-prediction

if result<lowValue then result=result+wrapValue

Finally, the prediction value for the next input is set to be
equal to current input namely:

prediction=original

Such sum and difference operations, all four methods, are
also applicable to 1-bit data, namely bit-by-bit, namely when
implementing ODelta versions of the encoder 1010 and
decoder 1020. In a situation of 1-bit data, the next values are
already known by both the encoder 1010 and the decoder
1020, namely MIN=0, MAX=1. Moreover, it is beneficially
assumed that lowValue=MIN=0, and highValue=MAX=1.
Furthermore, in such case, the “number” is therefore [high-
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Value-lowValue=1-0=1], and wrapValue is beneficially cho-
sen to be “number”+1=1+1=2. Beneficially, the prediction
value is chosen to be a value “0”, because there is only 1-bit
data being considered that can only have positive values
starting from lowValue=MIN=0. For 1-bit data, the method
1 and the method 3 yield mutually similar coding results.
Similarly, the method 2 and the method 4 yield mutually
similar coding results. Having such knowledge beneficially
simplifies the information which needs to be sent in the data
DAZ2, as various defaults can be assumed, namely it is only
necessary to send information about the number of execu-
tion times of the difference operations, either the method 1
or the method 2, and the selected prediction (input value
(method 1) or result value (method 2)), so that the decoder
1020 can execute the correct inverse difference operation a
requisite number of times when decoding the data DA2,
DA3 or DA4 to generate the decoded data DAS.

The first example that was created by using the method 1
or the method 3 that creates similar output, can also be
processed by using either the method 2 or the method 4,
which also create similar output. The result shown below
can be achieved by those methods when applied to the data
Eq I:

01100100011110011111111111
10101010101

“1

This time, the processed data has twenty four s and
thirteen “0”’s, namely the entropy is the same as in the first
example, but the counts of “1” and “0” change places. This
does not always occur, instead often the entropy changes as
well between these different methods. For example, after the
four first elements of data, the method 1 and/or the method
3 produces three “1”’s and one “0”, whereas in the original
data and the data that has been processed with the method 2
and/or the method 4 have two “1”’s and two “0”’s. There-
fore, the method 1 and/or the method 3 in such case produce
smaller entropy than the method 2 and/or the method 4, and
also smaller entropy than originally.

In a multi-bit implementation, if the data DA1 includes
values in a range from -64 to +63, then MIN=-64 and
MAX=63. By assuming lowValue=MIN  and
highValue=MAX, the “number”=127 and wrap Value is ben-
eficially chosen to be 128. However, when the data DA1
varies at random, the “prediction” value is beneficially set to
a value [(wrapValue+1) div 2+lowValue=64+-64=0].

It will be appreciated that, if the first value is for example
-1, the first coded value with the direct ODelta method 1,
and/or the method 2, would be -1-0=-1, and correspond-
ingly, with the direct ODelta method 3, and/or the method 4,
—-1+0=-1. The next values would then change according to
how the data progresses, for example if the second value
would be 5, then the direct ODelta method 1 would produce
5—-1=6, the direct ODelta method 2 would produce
5—-1=6, the direct ODelta method 3 would produce
5+-1=4, and the direct ODelta method 4 would produce
5+-1=4. The decoder 1020 would in this case be able to
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produce as the first value when using the inverse ODelta
method 1, and/or the method 2, —-1+0=-1 and with the
inverse ODelta method 3, and/or the method 4, -1-0=-1.
Correspondingly, the second value with the inverse ODelta
method 1 would be 6+-1=5, with the inverse ODelta method
2 it would be 6+-1=5, with the inverse ODelta method 3 it
would be 4--1=5 and with the inverse ODelta it would be
4—-1=5.

Such a solution can then be optimized if the number range
actually only contains values between —20 and +27. In this
example case, it is feasible to transmit, for example,
lowValue=-20 and high Value=27. If both are transmitted, it
is feasible to calculate that number=47 and wrapValue is
then chosen to be beneficially 48. Now, it is feasible to
calculate the value 48 div 2+-20=4 for prediction. Then, the
previous example would yield for example for the value -1
when the ODelta methodl, or the method 2, is used:
—1-4=-5 and with the ODelta method 3, or the method 4,
—-1+4=3. Similarly, the second value would be for the ODelta
methods as (5--1)=6, (5--5)=10, (5+-1)=4, and (5+3)=8.
Decoding in the decoder 1020 functions correctly again and
yields the first value for method 1, and/or method 2, as
—544=-1 and for method 3, and/or method 4, as 3-4=-1.
Correspondingly, the second values for different methods
would be decoded as (6+-1)=5, (10+-5)=5, (4--1)=5, and
(8-3)=5.

It will be appreciated that all the values in these examples
above are inside the range, namely from -64 to +63 or from
-20 to +27, and so it is not necessary to perform the
correction term within these example values, but if any
negative or positive change is big enough, then the correc-
tion to the data values have to be made by the given
Equations 21 to 24 (Eq. 21 to Eq. 24) to keep the result
values within the range. It is to be noted that the correction
term here refers to the wraparound value.

When lowValue is known, coded values are beneficially
arranged to start with O and to end with a value “number”,
for simplifying a coding table which must be sent from the
encoder 1010 to the decoder 1020 with the entropy encoded
data DA3. This operation is called post-offset, and this
post-offset value has to be deleted from the coded data
values after the entropy decoding and before the inverse
ODelta operation to data DA4.

As mentioned earlier, it is also possible to implement the
offset with the pre-offset functionality, where the original
input data (DA1) is transformed into positive elements
which can contain values from zero to “number” already
before the actual execution of the ODelta method. Also in
this situation, the information transmission that this opera-
tion requires is beneficial to perform in such a way that the
“pre-offset” and ODelta method do not repeatedly transmit
the same information, or ignore what is already known
thanks to some other method. This pre-offset effect should be
deleted from the decoded data after the inverse ODelta
operation to create proper DAS output data.

TABLE 4

Known technical art

Earlier

document Detail

P1

“Variable-length code”, Wikipedia (accessed 28 Nov. 2012)

URL: http://en.wikipedia.org/wiki/Variable-length_ code

P2

“Run-length encoding”, Wikipedia (accessed 28 Nov. 2012)

URL: http://en.wikipedia.org/wiki/Run-length encoding
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40

Known technical art

Earlier
document Detail
P3 “Huffman coding”, Wikipedia (accessed 28 Nov. 2012)
URL: http://en.wikipedia.org/wiki/Huffiman_ coding
P4 “Arithmetic coding”, Wikipedia (accessed 28 Nov. 2012)
URL: http://en.wikipedia.org/wiki/Arithmetic_ coding
Ps “A Mathematic Theory of Communication”, Shannon, Claude E. (1948) (accessed 28 Nov. 2012)
URL: http://cm:bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
P6 “Delta encoding”, Wikipedia (accessed 28 Nov. 2012)
URL: http://en.wikipedia.org/wiki/Delta_ coding
P7 Shannon’s source coding theorem; Wiikipedia (accessed 28 Nov. 2012)
URL: http://en.wikipedia.org/wiki/Source__coding_ theorem
P8 “Entropy” - Wikipedia (accessed 28 Nov. 2012)

URL: http://en.wikipedia.org/wiki/Entropy

Appendix 2: Overview of Block Encoder

The block encoder is described in patent document
GB2503295, whose contents are hereby incorporated by
reference. There is provided a method of encoding input
data, and an encoder operable to encode input data,

The method of encoding input data to generate corre-
sponding encoded output data, is characterized in that the
method includes steps of:

(a) sub-dividing the input data into a plurality of blocks or
packets, the blocks or packets having a size depending
upon a nature of their content, and the blocks or packets
being of one or more sizes;

(b) applying a plurality of transformations to content of the
blocks or packets to generate corresponding transformed
data;

(c) checking a quality of representation of the transformed
data of the blocks or packets compared to the content of
the blocks or packets prior to application of the transfor-
mations to determine whether or not the quality of rep-
resentation of the transformed data satisfies one or more
quality criteria;

(d) in an event that the quality of representation of the
transformed data of the one or more blocks or packets
does not satisfy the one or more quality criteria, sub-
dividing and/or combining the one or more blocks or
packets further and repeating step (b); and

(e) in an event that the quality of representation of the
transformed data of the one or more blocks or packets
satisfies the one or more quality criteria, outputting the
transformed data to provide the encoded output data
representative of the input data to be encoded.

The encoder operable to encode input data to generate
corresponding encoded output data is characterized in that
the encoder includes data processing hardware which is
operable:

(a) to sub-divide the input data into a plurality of blocks or
packets, the blocks or packets having a size depending
upon a nature of their content, and the blocks or packets
being of one or more sizes;

(b) to apply at least one transformation to content of the
blocks or packets to generate corresponding transformed
data;

(c) to check a quality of representation of the transformed
data of the blocks or packets compared to the content of
the blocks or packets prior to application of the transfor-
mations to determine whether or not the quality of rep-
resentation of the transformed data satisfies one or more
quality criteria;
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(d) in an event that the quality of representation of the
transformed data of the one or more blocks or packets
does not satisfy the one or more quality criteria, to
sub-divide and/or to combine the one or more blocks or
packets further and repeating step (b); and

(e) in an event that the quality of representation of the
transformed data of the one or more blocks or packets
satisfies the one or more quality criteria, to output the
transformed data to provide the encoded output data
representative of the input data to be encoded.

Appendix 3: Overview of Block Decoder

An overview of a block decoder is also described in a
patent document GB2505169, whose contents are hereby
incorporated by reference. There is provided a method of
decoding encoded input data, and a decoder which is oper-
able to decode input data.

The method of decoding encoded input data to generate
corresponding decoded output data is characterized in that
the method includes steps of:

(a) processing the encoded input data to extract therefrom
header information indicative of encoded data pertaining
to blocks and/or packets included in the encoded input
data, the header information including data indicative of
one or more transformations employed to encode and
compress original block and/or packet data for inclusion
as the encoded data pertaining to the blocks and/or
packets;

(b) preparing a data field in a data storage arrangement for
receiving decoded block and/or packet content;

(c) retrieving information describing the one or more trans-
formations and then applying an inverse of the one or
more transformations for decoding the encoded and com-
pressed original block and/or packet data to generate
corresponding decoded block and/or packet content for
populating the data field;

(d) splitting and/or combining blocks and/or packets in the
data field according to splitting and/or combining infor-
mation included in the encoded input data; and

(e) when the encoded input data has been at least partially
decoded, outputting data from the data field as the
decoded output data.

The decoder which is operable to decode input data to
generate corresponding decoded output data is characterized
in that the decoder includes data processing hardware which
is operable:

(a) to process the encoded input data to extract therefrom
header information indicative of encoded data pertaining
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to blocks and/or packets included in the encoded input
data, the header information including data indicative of
one or more transformations employed to encode and
compress original block and/or packet data for inclusion
as the encoded data pertaining to the blocks and/or
packets;

(b) to prepare a data field in a data storage arrangement for
receiving decoded block and/or packet content;

(c) to retrieve information describing the one or more
transformations and then applying an inverse of the one or
more transformations for decoding the encoded and com-
pressed original block and/or packet data to generate
corresponding decoded block and/or packet content for
populating the data field;

(d) to split and/or combine blocks and/or packets in the data
field according to splitting and/or combining information
included in the encoded input data; and

(e) when the encoded input data has been at least partially
decoded, to output data from the data field as the decoded
output data.

The invention claimed is:

1. An encoder for encoding input data to generate corre-
sponding encoded data, characterized in that the encoder is
operable to select at least one Delta encoding algorithm to
process the input data and to encode original values of at
least a portion thereof into delta values that are expressed
using a value range that is not increased as compared to a
value range of the original values, and to generate one or
more predictors for use in encoding one or more subsequent
portions of the input data, wherein the encoder is also
operable to encode data generated by the at least one Delta
encoding algorithm (ODelta, DDelta, IDelta, PDelta) and
the one or more predictors by employing at least one entropy
encoding algorithm to generate the encoded data, wherein
the one or more predictors include at least one of:

(1) one or more temporal predictors;

(ii) one or more local spatial predictors which are subject

to quantization; or

(iii) one or more local spatial predictors utilizing pre-

computed values,

wherein the at least one Delta encoding algorithm encod-

ing the original values into delta values that are

expressed using the value range that is not increased as
compared to the value range of original values is
implemented by at least one of

(a) using a data processing arrangement for applying to
the input data a form of differential and/or sum
encoding to generate one or more corresponding
encoded sequences, and using the data processing
arrangement to subject the one or more correspond-
ing encoded sequences to a wrap around a maximum
value and/or a wrap around a minimum value, for
generating the encoded output data (=ODelta);

(b) expressing the delta values without sign, when the
delta values include only negative values (=DDelta)
or include only positive values (=IDelta); or

(c) using an offset value to express the delta values
within the value range of the original values
(=PDelta).

2. An encoder as claimed in claim 1, wherein information
which is indicative of a selection of the at least one Delta
encoding algorithm (ODelta, DDelta, IDelta, PDelta) is
included in the encoded data.

3. An encoder as claimed in claim 1, characterized in that
the encoder is operable to employ at least one quantization
algorithm when encoding the input data to generate the
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encoded data, wherein the at least one quantization algo-
rithm results in the encoder providing lossy encoding of the
input data.

4. An encoder as claimed in claim 1, characterized in that
the encoder is operable to employ different algorithms for
encoding data of different data structures present in the input
data.

5. An encoder as claimed in claim 1, characterized in that
the encoder is operable to employ RD optimization when
encoding the input data block-by-block.

6. An encoder as claimed in claim 5, characterized in that
the RD optimization is computed within the encoder to
minimize a value V of an equation:

V=D+L*R

wherein the distortion is a sum of squares error between
the input data and a representation of the input data
encoded into the encoded data and decoded into the
decoded data and wherein a rate represents an amount
of encoded data measured as bits.

7. An encoder as claimed in claim 1, characterized in that
the at least one Delta encoding algorithm (ODelta, DDelta,
Delta, PDelta) and/or the at least one entropy encoding
algorithm is operable to employ at least one of: DC methods,
slide methods, multilevel methods, DCT methods, line
methods, scale methods, database methods, Range coding,
Huffman coding, RLE coding, SRLE coding.

8. An encoder as claimed in claim 1, characterized in that
the encoder is operable to encode the input data including
data structures corresponding to at least one of: YUV
channels, BGR channels.

9. An encoder as claimed in claim 8, characterized in that
the encoder is operable to encode data of the channels in an
order Y, U, V or in an order G, B, R.

10. An encoder as claimed in claim 1, characterized in that
the encoder is operable to include data in the encoded data
which is indicative of one or more encoding algorithms
employed by the encoder to encode the input data to
generate the encoded data.

11. A method of using an encoder for encoding input data
to generate corresponding encoded data, characterized in
that the method includes:

(1) using the encoder to select at least one Delta encoding
algorithm (ODelta, DDelta, Delta, PDelta) to process
the input data and to encode original values of at least
a portion thereof into delta values that are expressed
using a value range that is not increased as compared to
a value range of the original values;

(ii) using the encoder to generate one or more predictors
for use in encoding one or more subsequent portions of
the input data; and

(iii) using the encoder to encode data generated by the at
least one Delta encoding algorithm and the one or more
predictors by employing at least one entropy encoding
algorithm to generate the encoded data,

wherein the one or more predictors include at least one of:

(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject
to quantization; or

(ii1) one or more local spatial predictors utilizing pre-
computed values,

wherein the at least one Delta encoding algorithm encod-
ing the original values into delta values that are
expressed using the value range that is not increased as
compared to the value range of original values is
implemented by at least one of
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(a) using a data processing arrangement for applying to
the input data a form of differential and/or sum
encoding to generate one or more corresponding
encoded sequences, and using the data processing
arrangement to subject the one or more correspond-
ing encoded sequences to a wrap around a maximum
value and/or a wrap around a minimum value, for
generating the encoded output data (=ODelta);

(b) expressing the delta values without sign, when the
delta values include only negative values (=DDelta)
or include only positive values (=IDelta); or

(c) using an offset value to express the delta values
within the value range of the original values
(=PDelta).

12. A method as claimed in claim 11, characterized in that
the method includes arranging for the encoder to employ at
least one quantization algorithm when encoding the input
data to generate the encoded data, wherein the at least one
quantization algorithm results in the encoder providing lossy
encoding of the input data.

13. A method as claimed in claim 11, characterized in that
the method includes arranging for the encoder to employ
different algorithms for encoding data of different data
structures present in the input data.

14. A method as claimed in claim 11, characterized in that
the method includes arranging for the encoder to employ RD
optimization when encoding the input data block-by-block.

15. A method as claimed in claim 14, characterized in that
the RD optimization is computed within the encoder to
minimize a value V of an equation:

V=D+L*R

wherein the distortion is a sum of squares error between
the input data and a representation of the input data
encoded into the encoded data and decoded into the
decoded data, and wherein a rate represents an amount
of encoded data measured as bits.

16. A method as claimed in claim 11, characterized in that
the at least one Delta encoding algorithm (ODelta, DDelta,
Delta, PDelta) and/or the at least one entropy encoding
algorithm is operable to employ at least one of: DC methods,
slide methods, multilevel methods, DCT methods, line
methods, scale methods, database methods, Range coding,
Huffman coding, RLE coding, SRLE coding.

17. A method as claimed in claim 11, characterized in that
the method includes arranging for the encoder to encode the
input data including data structures corresponding to at least
one of: YUV channels, BGR channels.

18. A method as claimed in claim 17, characterized in that
the method includes arranging for the encoder to encode
data of the channels in an order Y, U, V or in an order G, B,
R.

19. A method as claimed in claim 11, characterized in that
the method includes arranging for the encoder to include
data in the encoded data which is indicative of one or more
encoding algorithms employed by the encoder to encode the
input data to generate the encoded data.

20. A decoder for decoding encoded data to generate
corresponding decoded data, characterized in that the
decoder is operable to process the encoded data by applying
at least one entropy decoding algorithm thereto to generate
processed data, and to use one or more predictors in com-
bination with at least one selected Delta decoding algorithm
(inverse ODelta, inverse DDelta, inverse IDelta, inverse
PDelta) to decode the processed data to generate the
decoded data,
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wherein the processed data includes delta values that are

expressed using a value range that is not increased as

compared to a value range of original data from which
the encoded data (E2) was generated based upon at
least one selected Delta encoding algorithm corre-
sponding to the at least one Delta decoding algorithm,
wherein the one or more predictors include at least one of:

(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject

to quantization; or

(ii1) one or more local spatial predictors utilizing pre-

computed values, wherein the at least one Delta decod-

ing algorithm is implemented by:

(a) using a data processing arrangement for applying to
the encoded data a form of differential and/or sum
decoding to generate one or more corresponding
decoded sequences, and using the data processing
arrangement to subject the one or more correspond-
ing decoded sequences to a wrap around a maximum
value and/or a wrap around a minimum value, for
generating the decoded output data (=inverse
ODelta);

(b) decoding the delta values, when the delta values
include only negative values (=inverse DDelta) or
include only positive values (=inverse Delta);

(c) using an offset value to decode the delta values
expressed within the value range of the original
values (=inverse PDelta).

21. A decoder as claimed in claim 20, characterized in that
the decoder is operable to employ at least one quantization
algorithm when decoding the encoded data to generate the
decoded data, wherein the at least one quantization algo-
rithm results in the decoder providing lossy decoding of the
encoded data.

22. A decoder as claimed in claim 20, characterized in that
the decoder is operable to employ mutually different algo-
rithms for decoding data of mutually different data structures
present in the encoded data.

23. A decoder as claimed in claim 20, characterized in that
the at least one Delta decoding algorithm and/or the at least
one entropy decoding algorithm (=inverse ODelta, inverse
DDelta, inverse IDelta, inverse PDelta) is operable to
employ at least one of: DC methods, slide methods, multi-
level methods, DCT methods, line methods, scale methods,
database methods, Range coding, Huffman coding, RLE
coding, SRLE coding.

24. A decoder as claimed in claim 20, characterized in that
the decoder is operable to decode the encoded data including
data structures corresponding to at least one of: YUV
channels, BGR channels.

25. A decoder as claimed in claim 24, characterized in that
the decoder is operable to decode data of the channels in an
order Y, U, V or in an order G, B, R.

26. A decoder as claimed in claim 20, characterized in that
the decoder is operable to decode data included in the
encoded data which is indicative of one or more Delta
decoding algorithms to be employed by the decoder to
decode the encoded data to generate the decoded data.

27. A method of decoding encoded data in a decoder to
generate corresponding data, characterized in that the
method of decoding includes processing the encoded data by
applying at least one entropy decoding algorithm thereto to
generate processed data, and using one or more predictors in
combination with at least one selected Delta decoding
algorithm (=inverse ODelta, inverse DDelta, inverse IDelta,
inverse PDelta) to decode the processed data to generate the
decoded data, wherein the processed data includes delta
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values that are expressed using a value range that is not
increased as compared to a value range of original data from
which the encoded data was generated based upon at least
one selected Delta encoding algorithm corresponding to the
at least one Delta decoding algorithm,

wherein the one or more predictors include at least one of:

(1) one or more temporal predictors;

(ii) one or more local spatial predictors which are subject

to quantization; or

(iii) one or more local spatial predictors utilizing pre-

computed values,

wherein the at least one Delta decoding algorithm is

implemented by:

(a) using a data processing arrangement for applying to
the encoded data a form of differential and/or sum
decoding to generate one or more corresponding
decoded sequences, and using the data processing
arrangement to subject the one or more correspond-
ing decoded sequences to a wrap around a maximum
value and/or a wrap around a minimum value, for
generating the decoded output data (=inverse
ODelta);

(b) decoding the delta values, when the delta values
include only negative values (=inverse DDelta) or
include only positive values (=inverse Delta);

(c) using an offset value to decode the delta values
expressed within the value range of the original
values (=inverse PDelta).

28. A computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising processing hardware to execute a method
of using an encoder for encoding input data to generate
corresponding encoded data, characterized in that the
method includes:

(1) using the encoder to select at least one Delta encoding

algorithm (ODelta, DDelta, Delta, PDelta) to process

the input data and to encode original values of at least
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a portion thereof into delta values that are expressed
using a value range that is not increased as compared to
a value range of the original values;

(ii) using the encoder to generate one or more predictors
for use in encoding one or more subsequent portions of
the input data; and

(iii) using the encoder to encode data generated by the at
least one Delta encoding algorithm and the one or more
predictors by employing at least one entropy encoding
algorithm to generate the encoded data,

wherein the one or more predictors include at least one of:
(1) one or more temporal predictors;

(i1) one or more local spatial predictors which are subject
to quantization; or

(ii1) one or more local spatial predictors utilizing pre-
computed values,

wherein the at least one Delta encoding algorithm encod-
ing the original values into delta values that are
expressed using the value range that is not increased as
compared to the value range of original values is
implemented by at least one of

(a) using a data processing arrangement for applying to
the input data a form of differential and/or sum
encoding to generate one or more corresponding
encoded sequences, and using the data processing
arrangement to subject the one or more correspond-
ing encoded sequences to a wrap around a maximum
value and/or a wrap around a minimum value, for
generating the encoded output data (=ODelta);

(b) expressing the delta values without sign, when the
delta values include only negative values (=DDelta)
or include only positive values (=IDelta); or

(c) using an offset value to express the delta values
within the value range of the original values
(=PDelta).



