US011783094B2

a2y United States Patent

Kirkkiinen et al.

US 11,783,094 B2
Oct. 10, 2023

(10) Patent No.:
5) Date of Patent:

(54) SYSTEM AND METHOD FOR PROVIDING (58) Field of Classification Search
PROTECTED DATA STORAGE IN DATA CPC ... GO6F 21/78; GO6F 21/54; GO6F 21/602;
MEMVIORY GOGF 21/6209; GOGF 21/75; GOGF
2221/0751
(71) Applicant: Gurulogic Microsystems Oy, Turku See application file for complete search history.
(D (56) References Cited
(72) Inventors: Tuomas Kirkkiinen, Turku (FI); U.S. PATENT DOCUMENTS
Jouni Laine, Turku (FT)
8,812,875 Bl 82014 Melvin
(73) Assignee: Gurulogic Microsystems Oy, Turku 2002/0129245 Al 9/2002 Cassagnol et al.
(FI) 2004,0032950 Al 2/2004 Graunke
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 FP 2674891 Al 122013
US.C. 154(b) by 277 days. GB 2136175 B 4/1986
Continued
Q1) Appl.No.. 17270967 (Continued)
(22) PCTFiled: Aug. 30, 2019 OTHER PUBLICATIONS
) GB Intellectual Property Office, Combined Search and Examination
(86) PCT No.: PCT/EP2019/073247 Report under Sections 17 and 18(3), Application No. GB1814149.9,
§ 371 (c)(1), dated Feb. 28, 2019, 9 pages.
(2) Date: Feb. 24, 2021 (Continued)
(87) PCT Pub. No.: W02020/043893 Primary Examiner — Ayoub Alata
) (74) Attorney, Agent, or Firm — ZIEGLER IP LAW
PCT Pub. Date: Mar. 5, 2020 GROUP LLC
(65) Prior Publication Data (57) ABSTRACT
US 2021/0319142 A1 Oct. 14, 2021 A system for protected data storage in a data memory of a
. . . computing device includes an encoder and a decoder. The
(30) Foreign Application Priority Data encoder encrypts unencrypted data using encryption infor-
mation to generate encrypted data, and stores the encrypted
Aug. 31, 2018 (GB) 1814149 data and the encryption information in data memoty. The
decoder accesses the encrypted data and the encryption
(51) Int. CL. information from the data memory, and decrypts the
GOGF 21/78 (2013.01) encrypted data using the encryption information to re-
GOok 21/54 (2013.01) generate the unencrypted data. Each time the unencrypted
(Continued) data is read from data memory or the unencrypted data is to
(52) US. CL be written to the data memory, the encoder re-encrypts the
CPC GO6F 21/78 (2013.01); GO6F 21/54 unencrypted data using newer encryption information to

(2013.01); GO6F 21/602 (2013.01);
(Continued)

generate newer encrypted data, and replaces previous
(Continued)

MEMORY 102 «— OBFUSC 108

DECODER 1

joil

US 11,783,094 B2
Page 2

encrypted data and previous encryption information with the
newer encrypted data and the newer encryption information,
respectively, in the data memory. The encoder and the
decoder are integrated, to operate in a single thread of
execution.

12 Claims, 3 Drawing Sheets

(51) Int. CL
GOGF 21/60 (2013.01)
GOGF 21/62 (2013.01)
GOGF 21/75 (2013.01)
(52) US.CL
CPC ... GOGF 21/6209 (2013.01); GOGF 21/75

(2013.01); GOGF 2221/0751 (2013.01)

(56) References Cited

FOREIGN PATENT DOCUMENTS

IE S20070421 A2 12/2007

WO 9726736 A1 7/1997

WO 2007144388 A1 12/2007
OTHER PUBLICATIONS

GB Intellectual Property Office, Examination Report under Section
18(3), Application No. GB1814149.9, dated Jul. 3, 2020, 4 pages.
GB Intellectual Property Office, Intention to Grant under Section
18(4), Application No. GB1814149.9, dated Oct. 23, 2020, 2 pages.
International Preliminary Report on Patentability, Application No.
PCT/EP2019/073247, dated Nov. 12, 2020, 10 pages.
International Search Report, Application No. PCT/EP2019/073247,
dated Dec. 2, 2019, 2 pages.

U.S. Patent Oct. 10, 2023 Sheet 1 of 3 US 11,783,094 B2

D1

ENCODER 104

EN

MEMORY 1

o

2

EN

DECODER 10

D1

FIG. 1A

U.S. Patent Oct. 10, 2023 Sheet 2 of 3 US 11,783,094 B2

D1
ENCODER 104
EN
MEMORY 102 [4¢—— OBFUSC 108
EN
DECODER 106
D1
AN
100

FIG. 1B

U.S. Patent Oct. 10, 2023 Sheet 3 of 3 US 11,783,094 B2

THREAD 1

THREAD 3
WRITE

Ay

ENCRYPT

FIG. 2

US 11,783,094 B2

1
SYSTEM AND METHOD FOR PROVIDING
PROTECTED DATA STORAGE IN DATA
MEMORY

TECHNICAL FIELD

The present disclosure relates to systems for providing
protected data storage in data memories of computing
devices. Moreover, the present disclosure is concerned with
methods for providing protected data storage in data memo-
ries of computing devices. Furthermore, the present disclo-
sure concerns computer program products comprising non-
transitory ~ computer-readable storage media having
computer-readable instructions stored thereon, the com-
puter-readable instructions being executable by a comput-
erized device comprising processing hardware to execute the
aforesaid methods.

BACKGROUND

Contemporary computer-related products (for example,
such as processing hardware, operating systems and so
forth) beneficially conform to data security standards. As an
example, for a given processing hardware, it is desired that
the given processing hardware has an isolated or trusted
environment, where all sensitive data can be processed
securely. Providing such an isolated or trusted environment
often increases a cost of manufacturing a given computer-
related product.

Moreover, it is contemporarily expected that, in many
situations, service providers (providing various services to
their consumers) execute their duty of care in respect of data
right protection of the consumers, and fulfill relevant legal
requirements.

Conventionally, hardware vendors have provided a
Trusted Execution Environment (TEE), which guarantees
“in theory™ protection for execution code and sensitive data
inside isolated hardware. Moreover, contemporary operating
systems (OS) employ a memory protection technique, which
prevents a process from accessing a portion of memory that
has not been allocated to it.

Furthermore, some conventional techniques encrypt the
data prior to storage in the memory. Such data encryption
typically utilizes a fixed encryption key that is selected by a
user or by a software application.

However, these conventional techniques for protecting
sensitive data suffer from several disadvantages. Firstly,
runtime memory is isolated from protected memory by
hardware or an operating system (OS). Secondly, the pro-
tected memory is static during non-modified memory usage.
Thirdly, one cannot trust protection techniques provided by
device manufacturers (for example, such as TEE), as secu-
rity implementations of such protection techniques are not
transparent to their users. Fourthly, the conventional tech-
niques are vulnerable to memory attacks, for example, such
as “Meltdown” and “Spectre”, which are critical vulnerabili-
ties in modern processing hardware. Fifthly, vulnerabilities
existing in the modern processing hardware cannot be fixed
easily, namely without changing their overall design.
Sixthly, memory operations employed at the OS level (to
safeguard against the aforementioned vulnerabilities) reduce
computing performance severely. Seventhly, one cannot
trust protection techniques provided by the operating sys-
tems (OS). as their security implementations are typically
based on information systems that are comprehensive and

10

15

20

25

30

35

40

45

50

55

60

65

2

intact only in theory; notably, new vulnerabilities are being
found from interfaces of such information systems every
now and then.

In light of the foregoing, there arises a contemporary need
for an improved system for providing protected data storage
in a data memory of a computing device, such that the
protected data storage is not vulnerable to memory attacks.

In a published United States patent document US 2002/
0129245 A1 (Robert Cassagnol et al.; “Apparatus for Pro-
viding a Secure Processing Environment”), there is
described an apparatus for providing a secure processing
environment. The apparatus includes a read/write memory
for storing encrypted information, a processor, a cipherer
and an authenticator. The cipherer receives encrypted infor-
mation from the read/write memory and decrypts the
encrypted information into decrypted information to be
returned to the memory for subsequent use by the processor.
The authenticator authenticates the decrypted information
prior to use by the processor and re-authenticates the infor-
mation prior to re-encryption by the cipherer. Upon re-
authentication, the information is re-encrypted and the re-
encrypted information is stored in an external memory along
with previous encrypted information.

In a published United Kingdom patent document
GB2136175A (Atalla Corporation; “File Access Security
Method and Means”), there is described an apparatus for
accessing files. The apparatus accesses a data file stored in
encrypted form using one encryption key and re-stores the
data file re-encrypted using another encryption key. The
apparatus produces a record of each access and re-encryp-
tion to control usage of encryption keys for access and
re-entry of the encrypted data file and to audit a record of
users that had access to the data file.

In a published United States patent document U.S. Pat.
No. 8,812,875B1 (Stephen Melvin; “Virtual self-destruction
of stored information™), there is described a method and
apparatus which are utilized to conveniently and swiftly
render stored information inaccessible. Sensitive informa-
tion 1s stored in an encrypted form and by eliminating the
key or keys which are needed for decryption, the stored
information becomes virtually destroyed. A variety of
mechanisms and policies can be used to manage, set and
eliminate decryption keys. In some cases decryption keys
can be stored in volatile storage elements so that by merely
interrupting power to the storage element, the decryption
keys are eliminated. In this way, a manually controlled
mechanism can be used to allow a user to accomplish a
“self-destruct” of the stored information instantly without
the need for the operation of any processor and without the
need to change any stored information.

In a published EP patent document EP2674891 Al
(Thomson Licensing SAS; “A method, a device and a
computer program support for execution of encrypted com-
puter code™), there is described a device which stores
program code in a plurality of slots in its memory. When a
processor of the device receives a call to an encrypted
function, uses a slot table to find the location of the cipher
function and the cipher module and the key to decrypt the
encrypted module. The encrypted module is decrypted,
executed, re-encrypted and moved to a new memory slot.
The cipher function used is moved to a further new slot and
the slot table is updated. Also provided is a method and a
computer program support. The implementation can make it
more difficult to analyse execution traces of the program
code.

In a published WIPO patent document WO 2007/144388
Al (Qtelmedia Group Limited, “A method for restricting

US 11,783,094 B2

3

access to digital content”), there is described a method for
restricting access to digital content. In particular, the imple-
mentation relates to a method for restricting access to
content such as ring tones and the like for mobile commu-
nication devices (MCDs). Content is encrypted using a first
encryption key prior to being transmitted from a content host
to the MCD. On arrival, the encrypted content is decrypted
using an appropriate key corresponding to the first encryp-
tion key. As the content is being decrypted, the decrypted
content is re-encrypted using another encryption key specific
to the MCD. The MCD is able to access the content on their
device using a key corresponding to the encryption key
specific to the MCD however the content cannot be sent to
another MCD 1in a decrypted format. In this way, content
cannot be passed from one MCD to another and used on the
second MCD.

In a published US patent document US 2004/032950 Al
(Intel Corp; “Method and apparatus for composable block
re-encryption of publicly distributed content”), there is
described secure communication from one encryption
domain to another using a trusted module. In one embodi-
ment, the implementation includes receiving encrypted
streamed content encrypted with a first key, generating a
substitution key stream based on the first key and a second
key, generating a transposition key stream based on the first
and second keys, and simultaneously decrypting and re-
encrypting the encrypted streamed content using a combi-
nation of the substitution and transposition streams to pro-
duce re-encrypted streamed content encrypted with the
second key.

SUMMARY

The present disclosure seeks to provide an improved
system for providing protected data storage in a data
memory of a computing device.

Moreover, the present disclosure seeks to provide an
improved method for providing protected data storage in a
data memory of a computing device.

A further aim of the present disclosure is to at least
partially overcome at least some of the problems of the prior
art, as described in the foregoing.

In a first aspect, embodiments of the present disclosure
provide a system that, when in operation, provides protected
data storage in a first data memory of a computing device,
characterized in that the system comprises:

an encoder executing on a processing hardware of the
computing device, wherein the encoder, when in operation:

generates encryption information according to an encryp-

tion algorithm,
encrypts unencrypted data (D1) using the encryption
information to generate encrypted data (E2), and

stores the encrypted data (E2) and the encryption infor-
mation in an allocated portion of the first data memory
and an allocated portion of a second data memory of the
computing device, respectively; and

a decoder executing on the processing hardware of the
computing device, wherein the decoder, when in operation:

accesses the encrypted data (E2) and the encryption

information from the allocated portion of the first data
memory and the allocated portion of the second data
memory, respectively, and

decrypts the encrypted data (E2) using the encryption

information to re-generate the unencrypted data (D1);
wherein the encoder, when in operation:

generates new encryption information according to the

encryption algorithm,

5

20

25

30

40

45

50

60

65

4

re-encrypts the unencrypted data (D1) using the new
encryption information to generate new encrypted data
(E3), and
replaces the encrypted data (E2) and the encryption
information with the new encrypted data (E3) and the
new encryption information in the allocated portion of
the first data memory and the allocated portion of the
second data memory, respectively,
wherein the unencrypted data (D1) is re-encrypted using
newer encryption information to generate newer encrypted
data (EN+1) each time the unencrypted data (D1) is read
from the allocated portion of the first data memory or the
unencrypted data (D1) is to be written to the allocated
portion of the first data memory, wherein previous encrypted
data (EN) and previous encryption information are to be
replaced with the newer encrypted data (EN+1) and the
newer encryption information in the allocated portion of the
first data memory and the allocated portion of the second
data memory, respectively,
further wherein the encoder and the decoder are integrated,
such that the decoder and the encoder, when in operation,
decrypt the previous encrypted data (EN) into the unen-
crypted data (D1) and re-encrypt the unencrypted data (D1)
into the newer encrypted data (EN+1), respectively, in a
single thread of execution, and wherein the encoder and the
decoder are implemented by way of a low-level code in an
inline configuration, such that a cycle of decryption and
encryption is not interrupted.

Embodiments of the present disclosure are of advantage
in that the system provides more robust protected data
storage against different kinds of memory attacks, and is not
prone to vulnerabilities of operating systems, target plat-
forms and hardware.

In a second aspect, embodiments of the present disclosure
provide a method for providing protected data storage in a
first data memory of a computing device, the method being
implemented by a system comprising an encoder and a
decoder, characterized in that the method comprises:

generating, via the encoder, encryption information
according to an encryption algorithm;

encrypting, via the encoder, unencrypted data (D1) using
the encryption information to generate encrypted data (E2)
and storing the encrypted data (E2) and the encryption
information in an allocated portion of the first data memory
and an allocated portion of a second data memory of the
computing device, respectively;

accessing, via the decoder, the encrypted data (E2) and the
encryption information from the allocated portion of the first
data memory and the allocated portion of the second data
memory, respectively, and decrypting the encrypted data
(E2) using the encryption information to re-generate the
unencrypted data (D1);

generating, via the encoder, new encryption information
according to the encryption algorithm; and

re-encrypting, via the encoder, the unencrypted data (D1)
using the new encryption information to generate new
encrypted data (E3) and replacing the encrypted data (E2)
and the encryption information with the new encrypted data
(E3) and the new encryption information in the allocated
portion of the first data memory and the allocated portion of
the second data memory, respectively,
wherein the steps of generating newer encryption informa-
tion, re-encrypting the unencrypted data (D1) to generate
newer encrypted data (EN+1) and replacing previous
encrypted data (EN) and previous encryption information
with the newer encrypted data (EN+1) and the newer
encryption information in the allocated portion of the first

US 11,783,094 B2

5

data memory and the allocated portion of the second data
memory. respectively, are repeated each time the unen-
crypted data (D1) is read from the allocated portion of the
first data memory or the unencrypted data (D1) is to be
written to the allocated portion of the first data memory,
further wherein the encoder and the decoder are integrated,
such that the steps of decrypting the previous encrypted data
(EN) into the unencrypted data (D1), re-encrypting the
unencrypted data (D1) into the newer encrypted data (EN+1)
and replacing the previous encrypted data (EN) and the
previous encryption information with the newer encrypted
data (EN+1) and the newer encryption information, respec-
tively, are performed in a single thread of execution, and
wherein the encoder and the decoder are implemented by
way of a low-level code in an inline configuration, such that
a cycle of decryption and encryption is not interrupted.

In a third aspect, embodiments of the present disclosure
provide a computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising processing hardware to execute a method
pursuant to the aforementioned second aspect.

Additional aspects, advantages, features and objects of the
present disclosure would be made apparent from the draw-
ings and the detailed description of the illustrative embodi-
ments construed in conjunction with the appended claims
that follow.

It will be appreciated that features of the present disclo-
sure are susceptible to being combined in various combina-
tions without departing from the scope of the present dis-
closure as defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed
description of illustrative embodiments, is better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the present disclosure, exemplary
constructions of the disclosure are shown in the drawings.
However, the present disclosure is not limited to specific
methods and apparatus disclosed herein. Moreover, those in
the art will understand that the drawings are not to scale.
Wherever possible, like elements have been indicated by
identical numbers.

Embodiments of the present disclosure will now be
described, by way of example only, with reference to the
following diagrams wherein:

FIGS. 1A and 1B are schematic illustrations of a system
for providing protected data storage in a data memory of a
computing device, in accordance with different embodi-
ments of the present disclosure; and

FIG. 2 is a schematic illustration of how a cycle of
decryption and encryption is performed in a single thread of
execution, pursuant to embodiments of the present disclo-
sure.

In the accompanying diagrams, an underlined number is
employed to represent an item over which the underlined
number is positioned or an item to which the underlined
number is adjacent. When a number is non-underlined and
accompanied by an associated arrow, the non-underlined
number is used to identify a general item at which the arrow
is pointing,

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, illustrative embodi-
ments of the present disclosure and ways in which they can

10

20

25

30

35

40

45

50

55

60

65

6

be implemented are elucidated. Although some modes of
carrying out the present disclosure are described, those
skilled in the art would recognize that other embodiments
for carrying out or practising the present disclosure are also
possible.

In a first aspect, embodiments of the present disclosure
provide a system that, when in operation, provides protected
data storage in a first data memory of a computing device,
characterized in that the system comprises:

an encoder executing on a processing hardware of the
computing device, wherein the encoder, when in operation:

generates encryption information according to an encryp-

tion algorithm,
encrypts unencrypted data (D1) using the encryption
information to generate encrypted data (E2), and

stores the encrypted data (E2) and the encryption infor-
mation in an allocated portion of the first data memory
and an allocated portion of a second data memory of the
computing device, respectively; and

a decoder executing on the processing hardware of the
computing device, wherein the decoder, when in operation:

accesses the encrypted data (E2) and the encryption

information from the allocated portion of the first data
memory and the allocated portion of the second data
memory, respectively, and

decrypts the encrypted data (E2) using the encryption

information to re-generate the unencrypted data (D1);
wherein the encoder, when in operation:

generates new encryption information according to the

encryption algorithm,

re-encrypts the unencrypted data (D1) using the new

encryption information to generate new encrypted data
(E3), and
replaces the encrypted data (E2) and the encryption
information with the new encrypted data (E3) and the
new encryption information in the allocated portion of
the first data memory and the allocated portion of the
second data memory, respectively,
wherein the unencrypted data (D1) is re-encrypted using
newer encryption information to generate newer encrypted
data (EN+1) each time the unencrypted data (D1) is read
from the allocated portion of the first data memory or the
unencrypted data (D1) is to be written to the allocated
portion of the first data memory, wherein previous encrypted
data (EN) and previous encryption information are to be
replaced with the newer encrypted data (EN+1) and the
newer encryption information in the allocated portion of the
first data memory and the allocated portion of the second
data memory, respectively,
further wherein the encoder and the decoder are integrated,
such that the decoder and the encoder, when in operation,
decrypt the previous encrypted data (EN) into the unen-
crypted data (D1) and re-encrypt the unencrypted data (D1)
into the newer encrypted data (EN+1), respectively, in a
single thread of execution.

Throughout the present disclosure, the term “thread of
execution” generally refers to a smallest sequence of com-
puter-readable instructions that can be executed indepen-
dently by a scheduler. A thread of execution is a component
of a process; herein, the term “process” generally refers to
an instance of a computer program that is being executed,
namely during a runtime execution of the computer pro-
gram. While a computer program is merely a passive col-
lection of computer-readable instructions, a process is an
actual execution of those instructions. A process may com-
prise a single thread of execution or multiple threads of
execution that execute computer-readable instructions con-

US 11,783,094 B2

7

currently (namely, for parallel processing). It will be appre-
ciated that in the aforementioned system, decryption and
re-encryption instructions are executed as a part of a process,
namely within a single thread of execution of the process,
wherein the process may have other threads executing their
respective instructions.

When executed in the single thread of execution, the
aforementioned operations of decrypting the previous
encrypted data (EN) into the unencrypted data (D1), re-
encrypting the unencrypted data (D1) into the newer
encrypted data (EN+1) and replacing the previous encrypted
data (EN) and the previous encryption information with the
newer encrypted data (EN+1) and the newer encryption
information, respectively, are performed in a sequential
manner.

It will be appreciated that prior to encrypting the unen-
crypted data (D1), the data is copied (namely, read) to the
first data memory in an unencrypted form. Immediately after
copying the unencrypted data (D1) to the first data memory,
encryption is performed using dynamically-generated
encryption information to generate the encrypted data (E2,
E3, EN or EN+1) for storage in the allocated portion of the
first data memory. The encrypted data (E2, E3, EN or EN+1)
and the dynamically-generated encryption information are
then stored in the allocated portion of the first data memory
and the allocated portion of the second data memory, respec-
tively, pursuant to embodiments of the present disclosure.

Each time the unencrypted data (D1) is required to be read
from the allocated portion of the first data memory or the
unencrypted data (D1) (whether modified or unmodified) is
required to be written to the allocated portion of the first data
memory, the decoder, when in operation, decrypts the pre-
vious encrypted data (EN) into the unencrypted data (D1).
After the aforesaid read or write operation, the encoder,
when in operation, re-encrypts the unencrypted data (D1)
into the newer encrypted data (EN+1) and replaces the
previous encrypted data (EN) and the previous encryption
information with the newer encrypted data (EN+1) and the
newer encryption information, respectively. As this cycle of
decryption and encryption is performed in the single thread
of execution pursuant to embodiments of the present dis-
closure, the encoder and the decoder operate without any
interruption (namely, from a beginning to an end) in the
single thread of execution. As a result, the data is never
stored in the unencrypted form in the first data memory. For
illustration purposes only, an example cycle of decryption
and encryption has been elucidated in conjunction with FIG.
2.

It will be appreciated that the decryption of the previous
encrypted data (EN) and the encryption of the unencrypted
data (D1) into the newer encrypted data (EN+1) are pro-
cessed in a single thread of execution, even when their
corresponding encryption information are accessed from
and stored at the second data memory that is different from
the first data memory. As a result, the cycle of decryption
and encryption is never exposed outside the single thread of
execution.

The aforementioned system provides a solution that at
least partially overcomes at least some of the problems of the
prior art, and that is independent of Operating Systems
(OS’s), target platforms and hardware. Moreover, the system
pursuant to embodiments of the present disclosure does not
require passwords (or similar) for protection.

Moreover, the aforementioned system, when in operation,
functions independently in the single thread of execution,
wherein a program utilizing the system is executed in a
process; the single thread of execution being a component of

15

20

25

40

45

55

60

65

8

said process. In operation, the system does not need to utilize
functionalities outside the single thread of execution. As a
result, user’s sensitive data is protected against interception
by malicious third parties.

Furthermore, in operation, the aforementioned system
employs an encryption mechanism that involves a self-
independent crypto operation that automates a process of
regenerating the encryption information. In other words, the
encryption information is generated internally and not by
external parties.

In some implementations, the second data memory is
same as the first data memory. It will be appreciated that the
terms “first” and “second” used herein do not denote any
order, quantity or importance, but rather are used to distin-
guish one element from another.

In other implementations, the second data memory is
different from the first data memory. In such an implemen-
tation, the encrypted data (E2, E3, EN or EN+1) and its
corresponding encryption information are stored at different
data memories. Optionally, in this regard, the system utilizes
different data memories for storing given encrypted data
(EN) and its corresponding encryption information depend-
ing on used hardware. This potentially strengthens security
of the protected data storage in the first data memory, as a
malicious party would have to address and hack protection
of the different data memories simultaneously in order to
access the sensitive data. This is nearly impossible to
achieve, even if the first data memory were penetrated via
some vulnerability.

Pursuant to embodiments of the present disclosure, the
aforementioned system is suitable for providing protected
storage of sensitive data during an execution of a program
(for example, a runtime execution of a software application).
The encoder of the system, when in operation, re-encrypts
the sensitive data using newer encryption information each
time the sensitive data is read from or is to be written to the
allocated portion of the first data memory. The encoder of
the system, when in operation, generates the newer encryp-
tion information dynamically. Such a dynamic re-encryption
prevents unauthorized access to the sensitive data in an
efficient manner. It will be appreciated that as the encoder
and the decoder operate in the single thread of execution,
accessing the sensitive data or tracking any changes in the
sensitive data occurring inside the processing hardware is
not possible even for a hardware vendor itself. Thus, the
aforementioned system is capable of providing various
services and software applications executing on the com-
puting device with an extended protection against malwares,
cyber spying, and the like. In this regard, the system is
capable of protecting user’s sensitive data during the run-
time execution even between different hardware and soft-
ware interfaces.

Throughout the present disclosure, the term “sensitive
data” refers to data that is required to be protected from
unauthorized access to safeguard the privacy or security of
an individual or an organization. Protection of sensitive data
may be required for legal or ethical reasons, for issues
pertaining to personal privacy, or for proprietary consider-
ations. As an example, the aforementioned system is ben-
eficial to use when creating and handling passwords and
Personal Identification Numbers (PIN’s), likewise personal
data.

Throughout the present disclosure, the term “data
memory” generally refers to a memory that is used for
temporarily storing variables and intermediate results used
during a runtime execution of one or more programs. The
term “data memory” encompasses both volatile and non-

US 11,783,094 B2

9

volatile data memories of the computing device. Some
examples of the first data memory and the second data
memory are a Random-Access Memory (RAM) and a
Central Processing Unit (CPU) register.

In some implementations, the first data memory can be
implemented as a memory provided by a hardware vendor’s
Trusted Execution Environment (TEE). In this way, the
aforementioned system can be integrated into the hardware
vendors’ TEE. This provides a hardware-backed secure
System on a Chip (SoC) that enables truly-verified security
services. In such an implementation, the encryption algo-
rithm is hardware-backed by utilizing a TEE supported by
the computing device. The TEE has a closed OS that
communicates with the main OS of the computing device
using a restricted interface memory. As an example, the
encryption algorithm can be hardware-backed by utilizing
Arm TrustZone or StrongBox Keymaster.

Pursuant to embodiments of the present disclosure, the
aforementioned system is suitable for protecting sensitive
variables stored in, for example, a RAM or a CPU register
of the computing device during runtime execution of various
services or software applications. Such protected sensitive
variables are to be used in a manner that is similar to how
unprotected variables are used in conventional techniques.
As a result, it is not necessary to make changes to a logical
development syntax and paradigm of a given program (for
example, a software application).

Throughout the present disclosure, the term “variable”
generally refers to a storage location in a given data memory
that is identified by a memory address, wherein the storage
location is referred to by a symbolic name, and contains
some known or unknown quantity of information referred to
as a “data value”. Throughout the present disclosure, the
term “protected variable” refers to a variable whose data
value is protected by the aforesaid dynamic re-encryption
(namely, re-encryption using dynamically-generated
encryption information) prior to storage in the first data
memory, pursuant to embodiments of the present disclosure.
Pursuant to embodiments of the present disclosure, the
protected variable contains the data value in an encrypted
form (hereinafter, referred to as the “encrypted data value”,
for the sake of clarity only). It will be appreciated that
storing the data value in the encrypted form (namely, the
encrypted data value) provides protection against different
kinds of memory attacks, which may try to read or modify
the stored data value.

It will be appreciated that a given protected variable is
always utilized (namely, for read or write operations during
the runtime execution) in the unencrypted form (namely, in
a form of plaintext). For this purpose, the aforementioned
decoder, when in operation, accesses an encrypted data
value of the given protected variable and its corresponding
encryption information from the allocated portion of the first
data memory and the allocated portion of the second data
memory, respectively, and decrypts the encrypted data value
using its corresponding encryption information to generate a
decrypted, namely an unencrypted data value. This unen-
crypted data value is then utilized during the runtime execu-
tion.

However, after this unencrypted data value is utilized, the
aforementioned encoder, when in operation, dynamically
generates newer encryption information, re-encrypts the
unencrypted data value of the given protected variable using
the newer encryption information to generate a newer
encrypted data value, and replaces the encrypted data value
and its corresponding encryption information (stored previ-
ously in the first data memory and the second data memory)

10

15

20

25

30

35

40

45

50

55

60

65

10

with the newer encrypted data value and the newer encryp-
tion information, respectively. Beneficially, the aforesaid
decryption and re-encryption are performed in the single
thread of execution. Next time when the given protected
variable is required to be utilized for read or write opera-
tions, the aforementioned decoder, when in operation,
accesses this newer encrypted data value and this newer
encryption information from the allocated portion of the first
data memory and the allocated portion of the second data
memory, respectively, and decrypts the newer encrypted
data value using the newer encryption information to re-
generate the unencrypted data value.

This cycle of decryption and encryption is performed for
each read or write operation in a single thread of execution,
until the given protected variable is no longer required. The
cycle of decryption and encryption can be represented as
follows:

Step 1: Encrypt an unencrypted data value (using initial
encryption information) into an encrypted data value for the
first time and store the encrypted data value and the encryp-
tion information in the allocated portion of the first data
memory and the allocated portion of the second data
memory, respectively.

Step 2: Access the encrypted data value and the encryp-
tion information from the allocated portion of the first data
memory and the allocated portion of the second data
memory, respectively, and decrypt the encrypted data value
(using the encryption information) to re-generate the unen-
crypted data value.

Step 3: Utilize the unencrypted data value, as required. If
a read operation is performed, the unencrypted data value
remains unchanged. If a write operation is performed, the
unencrypted data value changes.

Step 4: Encrypt the unencrypted data value (whether
changed or unchanged) using dynamically-generated new
encryption information into a new encrypted data value and
replace the previous encrypted data value and the previous
encryption information with the new encrypted data value
and the new encryption information, respectively, in the
allocated portion of the first data memory and the allocated
portion of the second data memory, respectively.

The cycle of the steps 2, 3 and 4 is repeated each time the
given protected variable is required to be utilized, and is
performed in a single thread of execution. The single thread
of execution is not allowed to be suspended until the step 4
is performed (namely, until the unencrypted data value is
encrypted into the new encrypted data value and the previ-
ous encrypted data value and the previous encryption infor-
mation are replaced with the new encrypted data value and
the new encryption information, respectively). The aforesaid
cycle of the steps 2, 3 and 4 has been illustrated in conjunc-
tion with FIG. 2.

According to an embodiment, the aforementioned
encoder and the aforementioned decoder are susceptible to
being implemented by employing custom-designed digital
hardware, for example via use of one or more Application-
Specific Integrated Circuits (ASIC’s), custom-designed inte-
grated circuits and similar. In such a case, the processing
hardware of the computing device (on which the encoder
and the decoder are executed) includes the custom-designed
digital hardware.

Optionally, the system is implemented by employing
custom-designed digital hardware that is arranged to operate
with hardware associated with controlling the first data
memory of the computing device, such as to provide a
hybrid form of data memory hardware.

US 11,783,094 B2

11

According to another embodiment, the aforementioned
encoder and the aforementioned decoder are implemented,
at least in part, by way of encoding instructions and decod-
ing instructions, respectively, in a given program that, when
executed by the processing hardware of the computing
hardware, performs the aforementioned encryption and
decryption operations.

In such a case, the aforementioned system, in operation,
eliminates direct dependency on RAM security solutions,
and is not prone to vulnerabilities of Operating Systems
(08’s), target platforms and hardware (for example, such as
Meltdown and Spectre vulnerabilities, which are critical
vulnerabilities in modern processing hardware).

It will be appreciated that the aforementioned system is
susceptible to be implemented in low cost consumer devices
(namely, low cost computing devices) without compromis-
ing an overall data security. In other words, it is possible to
implement the aforementioned system independent of hard-
ware architecture of the computing device.

Optionally, the processing hardware of the computing
device (on which the encoder and the decoder are executed)
includes at least one Reduced Instruction Set Computing
(RISC) processor that is configured to execute the encoding
and decoding instructions as elucidated earlier. Such a RISC
processor is capable of performing relatively simpler con-
catenated operations at a very high speed, thereby providing
a shorter temporal window of opportunity for hostile attacks
to occur.

Examples of the computing device include, but are not
limited to, a smartphone, a Mobile Internet Device (MID),
a tablet computer, an Ultra-Mobile Personal Computer
(UMPC), a phablet computer, a Personal Digital Assistant
(PDA), a web pad, a Personal Computer (PC), a handheld
PC, a laptop computer, a desktop computer, a consumer
electronics apparatus, a wireless communication apparatus,
a scientific measuring apparatus, a military communications
equipment, and a video-conferencing equipment.

Furthermore, according to an embodiment, the unen-
crypted data (D1) comprises unencrypted data values of at
least one protected variable that are to be utilized during a
runtime execution of a program. The at least one protected
variable could, for example, comprise one or more sensitive
variables used during the runtime execution of the program.
In some implementations, the at least one protected variable
includes a single protected variable. In other implementa-
tions, the at least one protected variable includes a plurality
of protected variables.

Optionally, the allocated portion of the first data memory
comprises at least one portion of the first data memory that
is allocated to the at least one protected variable.

During the runtime execution of the program, read and/or
write operations may be performed several times on the at
least one protected variable (namely, according to the afore-
mentioned cycle of decryption and encryption). Each time
the data (D1) is read or is to be written, newer encryption
information is generated dynamically and the data (D1) is
re-encrypted using the newer encryption information in a
single thread of execution. It will be appreciated that the data
(D1) is re-encrypted until last encrypted data (EN+1) is
generated using last encryption information before the run-
time execution of the program is over.

It is essential from a security perspective that the cycle of
decryption and encryption are performed without any inter-
ruption. Beneficially, the encoder and the decoder are imple-
mented in an inline configuration (namely, an assembler),
such that the processing hardware of the computing device
(for example, a central processing unit of the computing

20

25

40

45

50

60

65

12

device) does not pause (namely, interrupt) an on-going
process of the re-encryption of the data (D1). The inline
configuration prevents interception by malicious third par-
ties.

In this regard, the steps of generating the newer encryp-
tion information, re-encrypting the data (D1) into newer
encrypted data (EN+1) using the newer encryption informa-
tion and replacing previous encrypted data (EN) and previ-
ous encryption information with the newer encrypted data
(EN+1) and the newer encryption information, respectively,
are performed at one go without any hardware interruption,
so that there is no time window for interception by malicious
third parties. This potentially prevents unauthorized parties
from performing a timing attack during the runtime execu-
tion of the program.

Optionally, in this regard, the program is implemented by
way of a low-level code in the inline configuration, such that
the processing hardware of the computing device does not
pause (namely, interrupt) an on-going process of the re-
encryption of the data (D1) until the code is executed
completely.

Additionally, optionally, pointers are used for direct
memory access to encrypted data values of the at least one
protected variable or processor register. This ensures that the
encrypted data values are neither transferred outside nor
replicated during the runtime execution of the program (for
example, a software application). It will be appreciated that
the use of the pointers is more secure as compared to
memory copy.

It will also be appreciated that the allocated portion of the
first data memory and the allocated portion of the second
data memory are allocated dynamically during the runtime
execution of the program, namely using dynamic memory
allocation. As a precise location of a given allocated portion
is not known in advance, a given data memory is accessed
indirectly, namely using pointers. In other words, a given
pointer is an address to a given dynamically-allocated por-
tion of a given data memory. During the runtime execution
of the program, a pointer to the allocated portion of the first
data memory enables access to given encrypted data (E2,
E3, EN or EN+1), whereas a pointer to the allocated portion
of the second data memory enables access to given encryp-
tion information.

It will also be appreciated that reading and writing the
encrypted data (E2, E3, EN or EN+1) from and to the
allocated portion of the first data memory pursuant to
embodiments of the present disclosure are performed in a
manner that is similar to reading and writing unencrypted
data in conventional techniques. In other words, reading and
writing the encrypted data values of the at least one pro-
tected variable pursuant to embodiments of the present
disclosure is performed in a manner that is similar to reading
and writing unencrypted data values of a variable in the
conventional techniques.

Moreover, optionally, the encoder, when in operation,
initializes the encryption information prior to encrypting the
unencrypted data (D1) for the first time. Optionally, in this
regard, the encoder, when in operation, generates the
encryption information initially (namely, only once) from at
least one initialization value. Optionally, the at least one
initialization value comprises at least one default value
and/or at least one random value of a predefined size. The at
least one random value is optionally also encrypted. Option-
ally, the at least one initialization value is stored in its
corresponding allocated portion of the first data memory or
the second data memory on a temporary basis.

US 11,783,094 B2

13

Optionally, the system further comprises an obfuscation
module executing on the processing hardware of the com-
puting device, wherein the obfuscation module, when in
operation, obfuscates the at least one initialization value
stored in the first data memory or the second data memory
prior to releasing its corresponding allocated portion of the
first data memory or the second data memory. Such obfus-
cation may, for example, be performed by way of various
types of bit swaps. This ensures that the first data memory
or the second data memory (for example, RAM, CPU
register or the like) does not store any data reference related
to the at least one initialization value that was stored during
the memory usage.

Pursuant to embodiments of the present disclosure, the at
least one initialization value is used only internally by the
aforementioned encoder for generating the encryption infor-
mation, and is restricted, so that it cannot be accessed or
used from outside the aforementioned encoder. In other
words, the at least one initialization value is used only
internally in the encryption algorithm, in order to generate
the encryption information for the first time.

Optionally, the obfuscation module, when in operation,
obfuscates the last encrypted data (EN+1) stored in the
allocated portion of the first data memory prior to releasing
the allocated portion of the first data memory.

Furthermore, in some implementations, the second data
memory is same as the first data memory. In such an
implementation, the encoder, when in operation, stores
given encryption information and given encrypted data (E2,
E3, EN or EN+1) in their respective allocated portions of the
first data memory. Optionally, in such a case, the obfuscation
module, when in operation, obfuscates the last encryption
information stored in its allocated portion of the first data
memory prior to releasing the allocated portion of the first
data memory.

In other implementations, the second data memory is
different from the first data memory used to store given
encrypted data (E2, E3, EN or EN+1).

Optionally, in such a case, the obfuscation module, when
in operation obfuscates the last encryption information
stored in the allocated portion of the second data memory
prior to releasing the allocated portion of the second data
memory.

Moreover, optionally, the encoder, when in operation,
generates the encryption information randomly. Optionally,
in this regard, the encryption information is generated using
an automated function. More optionally, new encryption
information is generated independent of old encryption
information (namely, previously-used encryption informa-
tion). This eliminates any possibility of creation of an
intentional or un-intentional vulnerability by a software
developer.

As mentioned earlier, the encryption information is gen-
erated according to the encryption algorithm that is to be
used for encrypting the unencrypted data (D1). It will be
appreciated that how the encryption information is utilized
depends on the encryption algorithm.

Optionally, the encryption algorithm employs symmetric
encryption. Optionally, in this regard, the encryption algo-
rithm is a block cipher algorithm (see https://en.wikipedi-
a.org/wiki/Block_cipher), for example. such as Advanced
Encryption Standard (AES). Alternatively, optionally, the
encryption algorithm is a stream cipher algorithm (see
https://en.wikipedia.org/wiki/Stream_cipher), for example,
such as ChaCha20 algorithm.

It is well known that the ChaCha20 algorithm is a
symmetric encryption algorithm with a randomly-generated

10

15

20

25

30

35

40

45

50

55

60

65

14

encryption key and a random integer ‘Nonce’. In an example
implementation, when the ChaCha20 algorithm is used, first
encryption information can be generated from the randomly-
generated encryption key and the random integer ‘Nonce’,
such that the first encryption information has a high entropy.
It will be appreciated that in such a case, the randomly-
generated encryption key and the random integer ‘Nonce’
collectively constitute the aforementioned initialization
value (namely, the at least one initialization value from
which the first encryption information is generated). In the
example implementation, subsequent encryption informa-
tion can be generated using an automated function.

It will be appreciated that the encryption algorithm can
alternatively be a suitable asymmetric encryption technique
(for example, such as RSA).

According to an embodiment, the encryption information
comprises at least one key to be used to encrypt the
unencrypted data values of the at least one protected variable
to generate the encrypted data values and/or to decrypt the
encrypted data values to re-generate the unencrypted data
values of the at least one protected variable. In some
implementations, the at least one key comprises a single
large key. In other implementations, the at least one key
comprises a plurality of keys.

According to another embodiment, the encryption infor-
mation comprises an index of the at least one key to be used
to encrypt the unencrypted data values to generate the
encrypted data values and/or to decrypt the encrypted data
values to re-generate the unencrypted data values. Option-
ally, in such a case, the at least one key is to be generated by
or accessed from a key store using the index. Optionally, the
key store is provided to the computing device by a trusted
service provider.

Optionally, indices are ordinal numbers of keys in an
order of their occurrence within the key store. Optionally, in
this regard, the indices are pre-stored in the key store
together with their associated keys. Alternatively, optionally,
the indices are generated in the key store, and then associ-
ated with their respective keys. As an example, the indices
may be generated in a consecutive manner corresponding to
an order in which the keys are stored in the key store.

Optionally, the key store is protected, and the keys are
made accessible for use, internally within the protected key
store, to at least one key-store integrated software applica-
tion, which accesses the keys for use via their indices only.
In other words, the keys are not accessible by software
applications or ecosystem processes from outside of the key
store.

Optionally, the encryption information further comprises
a unique identifier of the key store from which the at least
one key is to be generated or accessed. This is particularly
beneficial when there are a plurality of key stores, and it is
important to identify uniquely the key store from which the
at least one key is to be generated or accessed.

Optionally, the unique identifier of the key store is a serial
number assigned to the key store.

Optionally, the key store is implemented by way of a key
container or a key generator that is capable of storing keys
and/or generating keys based upon their indices in a repro-
ducible manner. By “reproducible”, it is meant that a same
key is generated from a given index in a repeatable marner
(namely, in a manner that the key generator always produces
the same key with the same index). As an example, the key
store can be implemented as described in a granted UK
patent GB2538052. As another example, the key store can
be implemented as described in a granted UK patent
GB2556638.

US 11,783,094 B2

15

Optionally, the encoder, when in operation, selects the
index randomly, and uses the key store to generate the at
least one key based upon the selected index.

For illustration purposes only, there will now be described
an example implementation of the aforementioned system
for providing protected data storage of data values of a given
protected variable used in an example program (for example,
a software application). There will now be considered three
stages of a runtime execution of the example program.
Phase A:

Before use, the first data memory must be internally
initialized. Typically, the program is written in a manner that
the internal initialization is taken care of automatically. For
example, when a given developer writes the program, the
given protected variable is uninitialized.

Step Al: A required portion (namely, a size) of the first
data memory is allocated for storing encrypted data values
of the given protected variable. The required portion of the
first data memory is optionally equal to a size defined for the
given protected variable in the example program. Option-
ally, the allocated portion of the first data memory is set to
a predefined default value of the given protected variable.

It will be appreciated that the size of the allocated portion
of the first data memory needs to be equal to or greater than
the size defined for the given protected variable. From a
technical point of view, it is advantageous when the size of
the allocated portion of the first data memory is greater than
the size defined for the given protected variable, because, in
such a case, the size of the allocated portion does not reveal
the size defined for the given protected variable.

Step A2: A required portion (namely, a size) of the second
data memory is allocated for storing encryption information.
Optionally, the encryption information is generated dynami-
cally for a defined encryption algorithm. More optionally,
the encryption information is generated randomly.

Optionally, the encryption information is generated ini-
tially from at least one initialization value, as described
earlier. In such a case, the at least one initialization value is
stored in its corresponding allocated portion of the first data
memory or the second data memory, and is obfuscated (for
example, by performing various types of bit swaps) before
the corresponding allocated portion of the first data memory
or the second data memory is released.

Phase B:

After the allocated portion of the first data memory is
initialized, the encrypted data values of the given protected
variable can be read from or written to the allocated portion
of the first data memory.

Optionally, in cases where the size of the allocated portion
of the first data memory is greater than the size defined for
the given protected variable, memory hopping is utilized.
Optionally, in this regard, variable offsets are utilized for
locating the encrypted data values of the given protected
variable in the allocated portion of the first data memory. In
other words, a given encrypted data value is written to a
location pointed by a variable offset; the variable offset
defines the location in the allocated portion of the first data
memory wherefrom the given encrypted data value is to be
found.

Moreover, optionally, in cases where the size of the
allocated portion of the first data memory is greater than the
size defined for the given protected variable, encryption is
performed on an entirety of the allocated portion of the first
data memory each time read/write operations are performed
on the given protected variable.

Step Bl: In operation, the aforementioned decoder
accesses an encrypted data value of the given protected

10

15

20

25

35

40

45

60

65

16

variable and its corresponding encryption information from
the allocated portion of the first data memory and the
allocated portion of the second data memory, respectively,
and decrypts the encrypted data value (namely, in a form of
ciphertext) using its corresponding encryption information
to generate a decrypted, namely an unencrypted data value
(namely, in a form of plaintext).

If the decryption is performed after the step A2, the
encryption algorithm is prepared for encryption and decryp-
tion purposes, and the encrypted data value is decrypted into
the unencrypted data value using the encryption information
generated during initialization.

If the decryption is performed after the step B3, the
encryption algorithm is already being used for encryption
and decryption purposes, and the encrypted data value is
decrypted into the unencrypted data value using newer
encryption information that is re-generated dynamically
during encoding (namely, encrypting).

Step B2: The unencrypted data value is utilized for read
or write operations during the runtime execution of the
program. Optionally, in this regard, the unencrypted data
value is returned to a calling function of the program during
the runtime execution.

Step B3: In operation, the aforementioned encoder re-
generates new encryption information, encrypts the unen-
crypted data value (namely, in a form of plaintext) using the
new encryption information to generate a newly-encrypted
data value (namely, in a form of ciphertext). The encrypted
data value and the encryption information stored previously
are then replaced with the newly-encrypted data value and
the new encryption information in the allocated portion of
the first data memory and the allocated portion of the second
data memory, respectively.

It will be appreciated that the encryption information is
re-generated dynamically after each encoding iteration;
therefore, there is no need to perform time-consuming
initialization operations (as performed in the aforemen-
tioned step A2) again.

As mentioned earlier, it is essential from the security
perspective that a cycle of the aforesaid steps B1, B2 and B3
is performed in a single thread of execution (namely, at one
go without any hardware interruption), so that there is no
time window for interception by a malicious third party.
Phase C:

When the given protected variable is not required to be
used any more in future, the allocated portion of the first data
memory is internally finalized. Typically, the program is
written in a manner that the internal finalization is taken care
of automatically. For example, when a given developer
writes the program, the given protected variable is unini-
tialized and the allocated portion of the first data memory is
freed.

Optionally, last encryption information stored in its allo-
cated portion of the second data memory is obfuscated, for
example by performing various types of bit swaps, before
the allocated portion of the second data memory is released.
This ensures that the second data memory (for example,
RAM. CPU register or the like) does not store any data
reference related to the last encryption information that was
stored during the memory usage.

Optionally, a last encrypted data value stored in the
allocated portion of the first data memory is obfuscated
before the allocated portion of the first data memory is
released.

Upon successful completion of the phase C, the allocated
portion of the first data memory is internally finalized, and
is available for use to other programs.

US 11,783,094 B2

17

Furthermore, for illustration purposes only, there will now
be considered some example cases indicating how re-gen-
erated encrypted information and re-encrypted data are
stored each time the data (D1) is read or is to be written to
the allocated portion of the first data memory during a
runtime execution of a program. In other words, the encryp-
tion information of the data to be encrypted always changes
when the data is being handled, namely read or written,
during the runtime execution of the program.

In these examples, an example protected variable is
allocated 32 bytes in the first data memory (hereinafter
referred to as a first allocated portion for the sake of
convenience only) and encryption information is also allo-
cated 32 bytes in the second data memory (hereinafter
referred to as a second allocated portion for the sake of
convenience only).

An initial unencrypted data value of the example pro-
tected variable (namely, as copied to the first data memory
for a first time) can be represented as follows:
84,0,101,0, 115, 0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133,

136, 38, 156, 203, 59, 74, 241, 229, 48, 145,79, 145, 121,

110, 77

First encryption information is generated according to an
encryption algorithm employed, and is then stored in the
second allocated portion of the second data memory. As an
example, according to the ChaCha20 encryption algorithm,
the first encryption information can be generated from a
randomly-generated encryption key and a random integer
‘Nonce’, such that the first encryption information has a high
entropy.

The first encryption information can be represented as
follows:

62,60, 2,2,2,150, 64, 74,209, 139, 87, 136, 98, 230, 205,
9, 207, 121, 195, 172, 90, 116, 219, 136, 139, 125, 16,
147, 210, 198, 142, 12
The initial unencrypted data value is then encrypted using

the first encryption information to generate a first encrypted
data value of the example protected variable, wherein the
first encrypted data value is stored in the first allocated
portion of the first data memory. The first encrypted data
value can be represented as follows:

29, 48, 233, 223, 69, 12, 41, 180, 202, 230, 171, 145, 235,
25,196, 236, 105, 253, 159, 71, 82, 79, 131, 222, 213, 61,
62, 241, 66, 59, 71, 191

Case A: Decrypting the First Encrypted Data Value
The case A concerns the aforementioned step B1, wherein

the first encrypted data value of the example protected
variable and the first encryption information are accessed
from the first allocated portion of the first data memory and
the second allocated portion of the second data memory,
respectively, and the first encrypted data value is decrypted
using the aforementioned first encryption information to
re-generate the initial unencrypted data value of the example
protected variable as follows:

84,0,101,0, 115, 0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133,
136, 38, 156, 203, 59, 74, 241, 229, 48, 145, 79, 145, 121,
110, 77

Case B: Modifving the Unencrypted Data Value
The case B concerns the aforementioned step B2, wherein

a first byte of the initial unencrypted data value of the

example protected variable is changed from ‘84’ to 1°; and

the modified unencrypted data value to be written can be
represented as follows:

1,0, 101, 0, 115, 0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133,
136, 38, 156,203, 59, 74, 241, 229, 48, 145,79, 145, 121,
110, 77

10

20

25

40

45

55

60

65

18

Case C: Encrypting the Modified Unencrypted Data Value

The case C concerns the aforementioned step B3, wherein
second encryption information is generated dynamically.
The second encryption information can be represented as
follows:

60, 62, 148, 66, 72, 71, 203, 29, 89, 233, 177, 69, 107, 41,
180, 202, 99, 35, 183, 119, 210, 255, 166, 152, 24, 175,
214, 29, 222, 250, 176, 152
The second encryption information replaces the first

encryption information stored previously in the second
allocated portion of the second data memory. The second
encryption information is used to encrypt the modified
unencrypted data value to generate a second encrypted data
value for storage in the first allocated portion of the first data
memory. The second encrypted data value can be repre-
sented as follows:

61, 62, 241, 66, 59, 71, 191, 29, 48, 233, 223, 69, 12, 41,
180, 202, 230, 171, 145, 235, 25, 196, 236, 105, 253, 159,
71, 82, 79. 131, 222, 213

Case D: Reading a Decrypted Data Value for a First Time
In the case D, the second encrypted data value of the

example protected variable and the second encryption infor-
mation are accessed from the first allocated portion and the
second allocated portion of the second data memory, respec-
tively, and the second encrypted data value is decrypted
using the second encryption information to re-generate the
unencrypted data value as follows:

1,0,101,0,115,0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133,
136, 38, 156, 203, 59, 74, 241, 229, 48, 145,79, 145, 121,
110, 77

Case E: Re-Encrypting the Same Unencrypted Data Value
In the case E, in order to encrypt the same unencrypted

data value, third encryption information is generated

dynamically; the third encryption information can be repre-
sented as follows:

126, 118, 211, 137, 85, 30, 34, 172, 28, 130, 152, 241, 161,
74,151,125, 20, 241,72, 209, 74, 231, 9, 78, 5, 113, 44,
173, 70, 132, 198, 75
The third encryption information replaces the second

encryption information stored previously in the second
allocated portion of the second data memory. The third
encryption information is used to encrypt the same unen-
crypted data value to generate a third encrypted data value
of the example protected variable for storage in the first
allocated portion of the first data memory. The third
encrypted data value can be represented as follows:

127,118, 182, 137, 38, 30, 86, 172, 117, 130, 246, 241, 198,
74, 151, 125, 145, 121, 110, 77, 129, 220, 67, 191, 224,
65, 189, 226, 215, 253, 168, 6

Case F: Reading the Decrypted Data Value for a Second

Time
In the case F, the third encrypted data value of the

example protected variable and the third encryption infor-
mation are accessed from the first allocated portion of the
first data memory and the second allocated portion of the
second data memory, respectively, and the third encrypted
data value is decrypted using the third encryption informa-
tion to re-generate the unencrypted data value as follows:

1,0,101,0, 115, 0, 116, 0, 105, 0, 110, 0, 103, 0, 0, 0, 133,
136, 38, 156, 203, 59, 74, 241, 229, 48, 145,79, 145,121,
110, 77

Case G: Re-Encrypting the Same Unencrypted Data Value
In the case G, in order to encrypt the same unencrypted

data value, fourth encryption information is generated

dynamically; the fourth encryption information can be rep-
resented as follows:

US 11,783,094 B2

19

247, 35,205, 171, 249, 2, 160, 52, 237, 35, 210, 102, 220,
94,102, 53, 197, 187, 175, 216, 4, 226, 120, 98, 168, 55,
168, 107, 13, 115, 229, 134
The fourth encryption information replaces the third

encryption information stored previously in the second
allocated portion of the second data memory. The fourth
encryption information is used to encrypt the same unen-
crypted data value to generate a fourth encrypted data value
of the example protected variable for storage in the first
allocated portion of the first data memory. The fourth
encrypted data value can be represented as follows:

246, 35, 168, 171, 138, 2, 212, 52, 132, 35, 188, 102, 187,
94,102, 53, 64, 51, 137, 68, 207, 217, 50, 147,77, 7, 57,
36, 156, 10, 139, 203
It will be appreciated that the aforesaid decryption and

encryption operations are performed in a repeating manner,

without any interruption, in a single thread of execution
during the runtime execution of the program. An example
cycle of decryption and encryption has been illustrated in

conjunction with FIG. 2.

In the above examples, the encryption information to be
stored (namely, replacing any previously-stored encryption
information) in the second allocated portion of the second
data memory is shown as underlined text for the sake of
clarity only. Likewise, the encrypted data value to be stored
(namely, replacing any previously-stored encrypted data
value) in the first allocated portion of the first data memory
is shown as bold text for the sake of clarity only.

In a second aspect, embodiments of the present disclosure
provide a method of (namely, a method for) providing
protected data storage in a first data memory of a computing
device, the method being implemented by a system com-
prising an encoder and a decoder, characterized in that the
method comprises:

generating, via the encoder, encryption information
according to an encryption algorithm;

encrypting, via the encoder, unencrypted data (D1) using
the encryption information to generate encrypted data (E2)
and storing the encrypted data (E2) and the encryption
information in an allocated portion of the first data memory
and an allocated portion of a second data memory of the
computing device, respectively;

accessing, via the decoder, the encrypted data (E2) and the
encryption information from the allocated portion of the first
data memory and the allocated portion of the second data
memory, respectively, and decrypting the encrypted data
(E2) using the encryption information to re-generate the
unencrypted data (D1);

generating, via the encoder, new encryption information
according to the encryption algorithm; and

re-encrypting, via the encoder, the unencrypted data (D1)
using the new encryption information to generate new
encrypted data (E3) and replacing the encrypted data (E2)
and the encryption information with the new encrypted data
(E3) and the new encryption information in the allocated
portion of the first data memory and the allocated portion of
the second data memory, respectively,
wherein the steps of generating newer encryption informa-
tion, re-encrypting the unencrypted data (D1) to generate
newer encrypted data (EN+1) and replacing previous
encrypted data (EN) and previous encryption information
with the newer encrvpted data (EN+1) and the newer
encryption information in the allocated portion of the first
data memory and the allocated portion of the second data
memory. respectively, are repeated each time the unen-
crypted data (D1) is read from the allocated portion of the

10

15

20

25

30

35

40

45

50

55

60

65

20

first data memory or the unencrypted data (D1) is to be
written to the allocated portion of the first data memory,
further wherein the encoder and the decoder are integrated,
such that the steps of decrypting the previous encrypted data
(EN) into the unencrypted data (D1), re-encrypting the
unencrypted data (D1) into the newer encrypted data (EN+1)
and replacing the previous encrypted data (EN) and the
previous encryption information with the newer encrypted
data (EN+1) and the newer encryption information, respec-
tively, are performed in a single thread of execution.

Various embodiments and variants disclosed above apply
mutatis mutandis to the method.

Optionally, the method further comprises generating ini-
tially (namely, only once), via the encoder, the encryption
information from at least one initialization value, as
described earlier. Optionally, in such a case, the at least one
initialization value is stored in its corresponding allocated
portion of the first data memory or the second data memory
on a temporary basis.

Optionally, the method further comprises obfuscating the
at least one initialization value stored in the first data
memory or the second data memory prior to releasing its
corresponding allocated portion of the first data memory or
the second data memory.

Optionally, the method further comprises obfuscating last
encrypted data (EN+1) stored in the allocated portion of the
first data memory prior to releasing the allocated portion of
the first data memory.

Moreover, in some implementations, the second data
memory is same as the first data memory. In such an
implementation, given encryption information and given
encrypted data (E2, E3, EN or EN+1) are stored in their
respective allocated portions of the first data memory.
Optionally, in such a case, the method further comprises
obfuscating last encryption information stored in its allo-
cated portion of the first data memory prior to releasing the
allocated portion of the first data memory.

In other implementations, the second data memory is
different from the first data memory used to store given
encrypted data (E2, E3, EN or EN+1). Optionally, in such a
case, the method further comprises obfuscating the last
encryption information stored in the allocated portion of the
second data memory prior to releasing the allocated portion
of the second data memory.

Optionally, in the method, the unencrypted data (D1)
comprises unencrypted data values of at least one protected
variable that are to be utilized during a runtime execution of
a program.

Optionally, the encryption information comprises at least
one key to be used to encrypt the unencrypted data values to
generate encrypted data values and/or to decrypt the
encrypted data values to re-generate the unencrypted data
values.

Alternatively, optionally, the encryption information com-
prises an index of the at least one key to be used to encrypt
the unencrypted data values to generate the encrypted data
values and/or to decrypt the encrypted data values to re-
generate the unencrypted data values. Optionally, in such a
case, the method further comprises generating by or access-
ing from a key store the at least one key using the index.
Optionally, in this regard, the encryption information further
comprises a unique identifier of the key store from which the
at least one key is to be generated or accessed.

Optionally, in the method, the encryption information is
generated randomly.

In a third aspect, embodiments of the present disclosure
provide a computer program product comprising a non-

US 11,783,094 B2

21

transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising processing hardware to execute a method
pursuant to the aforementioned second aspect.

Optionally, the computer-readable instructions are down-
loadable from a software application store, for example,
from an “App store” to the computerized device.

Next, embodiments of the present disclosure will be
described with reference to FIGS. 1A and 1B.

FIGS. 1A and 1B are schematic illustrations of a system
100 for providing protected data storage in a data memory
102 of a computing device, in accordance with different
embodiments of the present disclosure. Optionally, the sys-
tem 100 is implemented as custom-designed digital hard-
ware that is arranged to operate with hardware associated
with controlling the data memory 102, such as to provide a
hybrid form of data memory hardware.

With reference to FIGS. 1A and 1B, the system 100
comprises an encoder 104 and a decoder 106. The encoder
104, when in operation, generates encryption information
according to an encryption algorithm, encrypts unencrypted
data (D1) using the encryption information to generate
encrypted data (E2) and stores the encrypted data (E2) and
the encryption information in a first allocated portion of the
data memory 102 and a second allocated portion of the data
memory 102 or another data memory of the computing
device, respectively. The decoder 106, when in operation,
accesses the encrypted data (E2) and the encryption infor-
mation from the first allocated portion and the second
allocated portion, respectively, and decrypts the encrypted
data (E2) using the encryption information to re-generate the
unencrypted data (D1). Subsequently, the encoder 104,
when in operation, generates new encryption information
according to the encryption algorithm, re-encrypts the unen-
crypted data (D1) using the new encryption information to
generate new encrypted data (E3) and replaces the encrypted
data (E2) with the new encrypted data (E3) and the encryp-
tion information with the new encryption information in the
first allocated portion and the second allocated portion,
respectively.

The decoder 106, when in operation, accesses previous
encrypted data (EN) and previous encryption information
from the first allocated portion and the second allocated
portion, respectively, and decrypts the previous encrypted
data (EN) using the previous encryption information to
re-generate the unencrypted data (D1). After the unen-
crypted data (D1) is utilized (namely, for a read or write
operation), the encoder 104, when in operation, re-encrypts
the unencrypted data (D1) into newer encrypted data (EN+1)
using newer encryption information, and replaces the pre-
vious encrypted data (EN) and the previous encryption
information with the newer encrypted data (EN+1) and the
newer encryption information in the first allocated portion
and the second allocated portion, respectively.

The encoder 104 and the decoder 106 are integrated, such
that the decoder 106 and the encoder 104, when in operation,
decrypt the previous encrypted data (EN) into the unen-
crypted data (D1) and re-encrypt the unencrypted data (D1)
into the newer encrypted data (EN+1), respectively, in a
single thread of execution.

With reference to FIG. 1B, the system 100 optionally
comprises an obfuscation module 108. The obfuscation
module 108, when in operation, obfuscates at least one
initialization value (used to generate the encryption infor-
mation initially) stored in its corresponding allocated portion

10

15

20

25

30

35

40

45

50

55

60

65

22

of the data memory 102 (or another data memory of the
computing device), prior to releasing the allocated portion of
the data memory 102.

FIGS. 1A and 1B are merely examples, which should not
unduly limit the scope of the claims herein. A person skilled
in the art will recognize many variations, alternatives, and
modifications of embodiments of the present disclosure.

FIG. 2 is a schematic illustration of how a cycle of
decryption and encryption is performed in a single thread of
execution, pursuant to embodiments of the present disclo-
sure.

As shown, the cycle of decryption and encryption is
performed in a single thread of execution ‘THREAD 1’ as
follows:

Step 1: Access an encrypted data value of a protected
variable and its corresponding encryption information from
an allocated portion of a first data memory and an allocated
portion of a second data memory, respectively, and decrypt
the encrypted data value (using the encryption information)
to generate a decrypted data value, namely an unencrypted
data value.

Step 2: Utilize the unencrypted data value for a read or
write operation.

Step 3: Encrypt the unencrypted data value (whether
changed or unchanged) using dynamically-generated new
encryption information into a new encrypted data value, and
replace the aforesaid encrypted data value and the encryp-
tion information with the new encrypted data value and the
new encryption information in the allocated portion of the
first data memory and the allocated portion of the second
data memory, respectively.

The thread ‘THREAD 1’ is not allowed to be suspended
until the step 3 is performed (namely, until the unencrypted
data value is encrypted into the new encrypted data value
and the previous encrypted data value and the previous
encryption information are replaced with the new encrypted
data value and the new encryption information, respec-
tively).

With reference to FIG. 2, the thread ‘THREAD 1’ is a
component of a process that has multiple threads, for
example, such as threads ‘“THREAD 2’ and ‘THREAD 3°. 1t
will be appreciated that the aforesaid cycle of decryption and
re-encryption is executed as a part of the process, namely
within the thread “THREAD 1°, wherein the process has
other threads executing their respective instructions
(namely, the threads ‘THREAD 2’ and ‘THREAD 3°). The
threads “THREAD 1°, ‘THREAD 2’ and ‘THREAD 3 are
executing their respective instructions independently. For
example, “THREAD 1’ of the process is shown to execute all
its instructions in a sequential manner and is indicative of the
execution of the instructions by the system pursuant to
embodiments of the present disclosure.

FIG. 2 is merely an example, which should not unduly
limit the scope of the claims herein. A person skilled in the
art will recognize many variations, alternatives, and modi-
fications of embodiments of the present disclosure. For
example, the process may have only one thread of execution,
namely the thread ‘THREAD 1°.

Modifications to embodiments of the present disclosure
described in the foregoing are possible without departing
from the scope of the present disclosure as defined by the
accompanying claims. Expressions such as “including”,
“comprising”, “incorporating”, “consisting of”, “have”, “is”
used to describe and claim the present invention are intended
to be construed in a non-exclusive manner, namely allowing
for items, components or elements not explicitly described
also to be present. Reference to the singular is also to be

US 11,783,094 B2

23

construed to relate to the plural; as an example, “at least one
of” indicates “one of” in an example, and “a plurality of” in
another example; moreover, “one or more” is to be construed
in a likewise manner.

The phrases “in an embodiment”, “according to an
embodiment” and the like generally mean the particular
feature, structure, or characteristic following the phrase is
included in at least one embodiment of the present disclo-
sure, and may be included in more than one embodiment of
the present disclosure. Importantly, such phrases do not
necessarily refer to the same embodiment.

If the specification states a component or feature “may”,
“can”, “could”, or “might” be included or have a character-
istic, that particular component or feature is not required to
be included or have the characteristic.

We claim:

1. A system that, when in operation, provides protected
data storage in a first data memory of a computing device,
wherein the system comprises:

an encoder executing on a processing hardware of the

computing device, wherein the encoder, when in opera-

tion:

generates encryption information from at least one
initialization value according to an encryption algo-
rithm, wherein the at least one initialization value is
used only internally in the encryption algorithm to
generate the encryption information,

encrypts unencrypted data using the encryption infor-
mation to generate encrypted data, and

stores the encrypted data in an allocated portion of a
first data memory and the encryption information in
an allocated portion of a second data memory of the
computing device, wherein the second data memory
is different from the first data memory; and

a decoder executing on the processing hardware of the

computing device, wherein the decoder, when in opera-

tion:

accesses the encrypted data and the encryption infor-
mation from the allocated portion of the first data
memory and the allocated portion of the second data
memory, respectively, and

decrypts the encrypted data using the encryption infor-
mation to re-generate the unencrypted data;

wherein the encoder, when in operation:

generates new encryption information according to the
encryption algorithm,

re-encrypts the unencrypted data using the new encryp-
tion information to generate new encrypted data, and

replaces the encrypted data and the encryption infor-
mation with the new encrypted data and the new
encryption information in the allocated portion of the
first data memory and the allocated portion of the
second data memory, respectively.

wherein the unencrypted data is re-encrypted using newer

encryption information to generate newer encrypted
data each time the unencrypted data is read from the
allocated portion of the first data memory or the unen-
crypted data is to be written to the allocated portion of
the first data memory, wherein previous encrypted data
and previous encryption information are to be replaced
with the newer encrypted data and the newer encryp-
tion information in the allocated portion of the first data
memory and the allocated portion of the second data
memory, respectively,

further wherein the encoder and the decoder are inte-

grated, such that the decoder and the encoder, when in
operation, decrypt the previous encrypted data into the

15

20

25

40

45

60

65

24

unencrypted data and re-encrypt the unencrypted data
into the newer encrypted data, respectively, in a single
thread of execution, and wherein the encoder and the
decoder are implemented by way of a low-level code in
an inline configuration, such that a cycle of decryption
and encryption is not interrupted.

2. The system of claim 1, wherein the encoder, when in
operation, generates the encryption information initially
from at least one initialization value, and the system further
comprises an obfuscation module executing on the process-
ing hardware of the computing device, wherein the obfus-
cation module, when in operation, obfuscates the at least one
initialization value stored in its corresponding allocated
portion of the first data memory or the second data memory
prior to releasing the corresponding allocated portion of the
first data memory or the second data memory.

3. The system of claim 1, wherein the unencrypted data
comprises unencrypted data values of at least one protected
variable that are to be utilized during a runtime execution of
a program, and the encryption information comprises at least
one key to be used to encrypt the unencrypted data values to
generate encrypted data values and/or to decrypt the
encrypted data values to re-generate the unencrypted data
values.

4. The system of claim 1, wherein the unencrypted data
comprises unencrypted data values of at least one protected
variable that are to be utilized during a runtime execution of
a program, and the encryption information comprises an
index of at least one key to be used to encrypt the unen-
crypted data values to generate encrypted data values and/or
to decrypt the encrypted data values to re-generate the
unencrypted data values, wherein the at least one key is to
be generated by or accessed from a key store using the index.

5. The system of claim 4, wherein the encryption infor-
mation further comprises a unique identifier of the key store
from which the at least one key is to be generated or
accessed.

6. The system of claim 1, wherein the encoder, when in
operation, generates the encryption information randomly.

7. A method for providing protected data storage in a first
data memory of a computing device, the method being
implemented by a system comprising an encoder and a
decoder, wherein the method comprises:

generating, via the encoder, encryption information from

at least one initialization value according to an encryp-
tion algorithm, wherein the at least one initialization
value is used only internally in the encryption algo-
rithm to generate the encryption information to gener-
ate the encryption information;

encrypting, via the encoder, unencrypted data using the

encryption information to generate encrypted data and
storing the encrypted data in an allocated portion of a
first data memory and the encryption information in an
allocated portion of a second data memory of the
computing device wherein the second data memory is
different from the first data memory;

accessing, via the decoder, the encrypted data and the

encryption information from the allocated portion of
the first data memory and the allocated portion of the
second data memory, respectively, and decrypting the
encrypted data using the encryption information to
re-generate the unencrypted data;

generating, via the encoder, new encryption information

according to the encryption algorithm; and
re-encrypting, via the encoder, the unencrypted data using

the new encryption information to generate new

encrypted data and replacing the encrypted data and the

US 11,783,094 B2

25

encryption information with the new encrypted data
and the new encryption information in the allocated
portion of the first data memory and the allocated
portion of the second data memory, respectively,

wherein the steps of generating newer encryption infor-
mation, re-encrypting the unencrypted data to generate
newer encrypted data and replacing previous encrypted
data and previous encryption information with the
newer encrypted data and the newer encryption infor-
mation in the allocated portion of the first data memory
and the allocated portion of the second data memory,
respectively, are repeated each time the unencrypted
data is read from the allocated portion of the first data
memory or the unencrypted data is to be written to the
allocated portion of the first data memory,

further wherein the encoder and the decoder are inte-
grated, such that the steps of decrypting the previous
encrypted data into the unencrypted data, re-encrypting
the unencrypted data into the newer encrypted data and
replacing the previous encrypted data and the previous
encryption information with the newer encrypted data
and the newer encryption information, respectively, are
performed in a single thread of execution and wherein
the encoder and the decoder are implemented by way of
a low-level code in an inline configuration, such that a
cycle of decryption and encryption is not interrupted.

8. The method of claim 7, wherein the method further

comprises:

generating initially, via the encoder, the encryption infor-
mation from at least one initialization value; and

obfuscating the at least one initialization value stored in
its corresponding allocated portion of the first data

15

20

25

26

memory or the second data memory prior to releasing
the corresponding allocated portion of the first data
memory or the second data memory.

9. The method of claim 7, wherein the unencrypted data
comprises unencrypted data values of at least one protected
variable that are to be utilized during a runtime execution of
a program, and the encryption information comprises at least
one key to be used to encrypt the unencrypted data values to
generate encrypted data values and/or to decrypt the
encrypted data values to re-generate the unencrypted data
values.

10. The method of claim 7, wherein the unencrypted data
comprises unencrypted data values of at least one protected
variable that are to be utilized during a runtime execution of
a program, and the encryption information comprises an
index of at least one key to be used to encrypt the unen-
crypted data values to generate encrypted data values and/or
to decrypt the encrypted data values to re-generate the
unencrypted data values, wherein the method further com-
prises generating by or accessing from a key store the at least
one key using the index.

11. The method of claim 7, wherein the encryption
information is generated randomly.

12. A computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising processing hardware to execute a method
as claimed in claim 7.

* 0k % %k ¥

	Bibliography
	Abstract
	Drawings
	Description
	Claims

