(12)

United States Patent

Kalevo

US008 1B1

754791B

US 8,754,791 B1
Jun. 17,2014

(10) Patent No.:
@45) Date of Patent:

(54)
71
(72)
(73)

*)

@21
(22)
(D
(52)

(58)

(56)

2002/0193668 Al

ENTROPY MODIFIER AND METHOD
Applicant: Gurulogic Microsystems Oy, Turku (FI)

Inventor: Ossi Kalevo, Toijala (FI)

Assignee: Gurulogic Microsystems Oy, Turku (FI)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 13/782,757

Filed: Mar. 1, 2013

Int. Cl.
HO3M 7/00
U.S. Cl.
USPC i 341/50; 341/51
Field of Classification Search
CPC .. HO3M 7/30; HO3M 7/4006; HO4N 7/26106;
HO4N 7/50; GO6K 9/38
.............. 341/50, 51, 107, 382/232, 237, 246;
375/240.03
See application file for complete search history.

(2006.01)

References Cited
U.S. PATENT DOCUMENTS

5,471,207 A * 11/1995 Zandietal. ...cooovnrnn 341/107
12/2002 Munneke et al.

FOREIGN PATENT DOCUMENTS

GB 2301252 A 11/1996
WO WO 2010/050157 Al 5/2010
OTHER PUBLICATIONS

Combined Search and Examination Report Under Sections 17 and
18(3) dated Aug. 22, 2013, issued by UKIPO in related U.K. Patent
Application No, GB1303658.7 (6 pages).

* cited by examiner

Primary Examiner — Joseph Lauture

(74) Attorney, Agent, or Firm — Robert P. Michal; Lucas &
Mercanti LLP

57) ABSTRACT

There is provided an entropy modifier which is operable to
encode, alternatively decode, a stream of input data bits hav-
ing a first entropy for generating corresponding entropy-
modified output data having a second entropy, wherein the
entropy modifier is operable to process the stream of input
data bits to handle groups of mutually similar bits and the
value of the first bit, and one or more maximum run lengths of
the groups of mutually similar bits. Optionally, the entropy
modifier is operable to control one or more maximum run
lengths of the groups of mutually similar bits by using at least
one escape code.

60 Claims, 1 Drawing Sheet

i)
b

1

U.S. Patent Jun. 17,2014 US 8,754,791 B1

I
¢
t
f
4
i
H

i

i

b

i

J K

N

US §,754,791 Bl

1
ENTROPY MODIFIER AND METHOD

FIELD OF THE INVENTION

The present invention relates to entropy modifiers which
are operable to receive input data and generate corresponding
output data whose entropy has been modified relative to that
of the input data, for example for purposes of data compres-
sion and/or data de-compression; the entropy modifiers are
implementable using electronic hardware and/or software
products stored on machine-readable data storage media and
executable upon computing hardware. Moreover, the present
invention also concerns methods of modifying entropy of
input data to generate corresponding output data which has a
modified degree of entropy relative to that of the input data.
Furthermore, the present invention relates to software prod-
ucts recorded on machine-readable data storage media,
wherein the software products are executable upon comput-
ing hardware for executing aforementioned methods. The
entropy modifiers are useable, for example, as component
parts of data communication systems and data supply sys-
tems, for example media supply systems.

BACKGROUND OF THE INVENTION

In overview, in information theory, entropy is a measure of
an uncertainty in a random variable, and pertains to physical
continuous systems, for example as in thermodynamics, as
well as to information systems, for example data communi-
cation systems. Moreover, in the context of data communica-
tion systems, entropy is more appropriately referred to as
being Shannon entropy; reference is made to Claude E. Shan-
non’s 1948 scientific paper “4 Mathematical Theory of Com-
munication” which is hereby incorporated by reference Shan-
non entropy is useable for quantifying an expected value of
information contained in a given message. Furthermore,
Shannon entropy is expressible in terms of nats and bans, as
well as bits.

Shannon entropy provides an absolute limit regarding a
best possible lossless encoding or compression of any com-
munication, assuming that a given communication is suscep-
tible to being represented as a sequence of independent and
identically-distributed random variables. Moreover, Shan-
non’s theory has indentified that an average length L of a
shortest possible representation to encode a given message in
a given alphabet is their entropy E divided by a logarithm of
a number of symbols N present in the alphabet, namely as
defined in Equation 1 (Eq, 1):

E Eq. 1
L=——
log;y ¥

Thus, the entropy E is a measure of unpredictability or
information content. In a lossless data compression method,
compressed output data generated by applying the method to
corresponding input data has a similar quantity of informa-
tion as the input data, but the output data includes fewer data
bits relative to the input data. In consequence, the compressed
output data is more unpredictable because it contains less
redundancy of information therein.

Shannon’s theory has been taken into account in the design
of known data encoding apparatus. For example, in a pub-
lished international patent application no. WO02010/
050157A1 (PCT/IP2009/005548, “Image encoding appara-
tus, image encoding method, and image encoding program”,

15

25

35

45

50

2

Applicant—Thomson Licensing), there is described an
image encoding apparatus, an image encoding method and an
image encoding program, which are operable to homogenize
image quality of an image as a whole without lowering encod-
ing efficiency, and which are operable at high speed, and are
capable of reducing the size of circuit scale by performing
macroblock shuffling without changing slice structure. More-
over, there is also provided an image encoding apparatus,
including:

(i) a shuffling portion which collects and shuffles a plurality of
macroblocks constituting image data from respective posi-
tions within an image;

(11) an encoding portion which performs spatial frequency
transformations and entropy encoding on the plurality of
macroblocks which are collected and shuffled by the shuf-
fling portion; and

(iii) a rate control portion which controls the encoding portion
to adjust the rate of the plurality of macroblocks after
encoding has been executed.

Data, irrespective of type of the data, require data storage
space, and also bandwidth in communication network capac-
ity when moved from one spatial location to another. Such
bandwidth corresponds to investment of communication
infrastructure and utilization of energy in reality. As volumes
of data to be communicated are projected to increase in
future, more data storage space and more communication
system capacity will be needed, and often also more energy
will be needed. In the contemporary Internet, there are stored
huge quantities of data, often in multiple copies. Thus, any
approach which is able to compress data, especially when
such compression is lossless, is potentially of great technical
and economic benefit. Contemporarily, there are several
known methods for reducing entropy within data sets, for
compressing the data sets. Moreover, there are known meth-
ods of modifying entropy present in data sets, for example
Delta coding and Run-Length-Encoding (RLE), but new
methods are still required which provide more effective data
compression of data.

Thus, there are many different compression methods that
are employable to compress given data by reducing entropy
present in given data, for example aforesaid RLE coding,
aforesaid VLC coding, Huffman coding, Delta coding and
Arithmetic coding. These methods are typically designed to
compress alphabets, numbers, bytes and words. However,
such methods are not particularly suitable for compressing
individual bits, and for this reason are not ideally suited for
compressing data that can change in a bit-by-bit manner, for
example streams of data bits.

In respect of conventional RLE coding, there is stored
either a given value, namely bit, or two times the value,
namely bit, and then a number of similar values, namely bits,
after that. RLE can be applied selectively, for example,
namely its coding can be reserved solely for coding runs
including a known amount of bits for a number of similar
values. Such selective application of RLE requires that the
same value be putonce or twice again into a given data stream
with each new run. However, there is contemporarily required
better approaches to data compression, which reduce entry in
sets of data, independently of types of data.

SUMMARY OF THE INVENTION

A first object of the present invention is to provide an
improved entropy modification, for example for providing
improved compression of data.

US §,754,791 Bl

3

A second object of the present invention is to provide an
improved method of entropy modification, for example for
providing improved compression of data.

According to a first aspect of the present invention, there is
provided an entropy modifier as claimed in appended claim 1:
there is provided an entropy modifier which is operable to
encode a stream of input data bits (D1) having a first entropy
for generating corresponding entropy-modified output data
(D2) having a second entropy, wherein the entropy modifier is
operable to process the stream of input data bits to handle
groups of mutually similar bits and the value of the first bit,
and one or more maximum run lengths of the groups of
mutually similar bits.

The present invention is of advantage in that selective use
of run length representation of the data is able to provide
enhanced entropy modification, for example enhanced data
compression.

Optionally, the entropy modifier is operable to control one
or more maximum run lengths of the groups of mutually
similar bits by using at least one escape code. More option-
ally, the entropy modifier is implemented such that the one or
more maximum run lengths of the groups of mutually similar
bits are controlled by a plurality of escape codes.

One kind of escape code solution employed uses a maxi-
mum run length value and an indication that the amount of
similar bits is continued. In this kind of solution all the sym-
bols can be coded as one data stream. The other kind of escape
code enables utilization of many different solutions that are
separated from the coded symbols and represents the continu-
ous amount of similar bits value that is greater than the maxi-
mum run length value. This kind of solution can be handled as
two separate streams or the solution can be designed so that
any value representing the number is not bigger than the
maximum run, such that they can also be coded with the same
stream of other symbols. Also other escape methods are
optionally employed.

Optionally, the entropy modifier is operable to handle the
input stream of data (D1) using the maximum run length in
manner which is dynamically varied as a function of a nature
of the stream of input data (D1).

Optionally, the entropy modifier is operable to handle a
value of a first bit in the stream of input data (D1) separately
from a sequence of data bits. More optionally, the entropy
modifier is operable to handle the value of the first bit as
separately encoded relative to the sequence of data values that
represent a continuous amount of similar bits.

Optionally, the entropy modifier is implemented such that
the at least one escape code is implemented as a “0” value
within the entropy modifier.

Optionally, the entropy modifier is utilized in conjunction
with one or more coding arrangements for handling the
stream of input data bits (D1), wherein the one or more coding
arrangements include one or more of: ODelta coder, RLE
coding, VLC coding, Huffman coding, Delta coding, Arith-
metic coding.

Optionally, the entropy modifier is operable to handle the
stream of input data bits (D1) in a plurality of parts which are
separately encoded or decoded. More optionally, the entropy
modifier is operable to handle the plurality of parts in a
temporally parallel manner, namely by way of parallel execu-
tion. More optionally, the entropy modifier is operable to
handle the plurality of parts by using maximum run lengths
which are mutually different for one or more of the parts.

Optionally, the entropy modifier is implemented to func-
tion as an encoder for compressing the stream of input data
(D1) to generate the entropy-modified output (D2, D3).

25

40

45

50

4

Optionally, the entropy modifier is operable to assist to
transform a bit string present in the input data (D1) to symbols
present in the entropy modified output data (D2).

Optionally, the entropy modifier includes computing hard-
ware, wherein the computing hardware is operable to execute
one or more software products recorded on machine-readable
data storage media for processing the stream of input data
(D1) to generate the output data (D2).

According to a second aspect of the invention, there is
provided an entropy modifier which is operable to decode a
stream of input data bits (D3 or D4) having a first entropy for
generating corresponding entropy-modified output data (D5)
having a second entropy, wherein the entropy modifier (60) is
operable to process the stream of input data bits (D3 or D4) to
handle groups of mutually similar bits and the value of the
first bit, and one or more maximum run lengths of the groups
of mutually similar bits.

Optionally, the entropy modifier is operable to process one
or more maximum run lengths of the groups of mutually
similar bits by using at least one escape code. More option-
ally, the entropy modifier is implemented such that the one or
more maximum run lengths of the groups of mutually similar
bits are processed by using a plurality of escape codes.

One kind of escape code solution employed uses a maxi-
mum run length value and an indication that the amount of
similar bits 1s continued. In this kind of solution all the sym-
bols can be coded as one data stream, similarly decoded a one
data stream. The other kind of escape code enables utilization
of many different solutions that are separated from the coded
symbols and represents the continuous amount of similar bits
value that is greater than the maximum run length value. This
kind of solution can be handled as two separate streams or the
solution can be designed so that any value representing the
number is not bigger than the maximum run, such that they
can also be coded with the same stream of other symbols.
Also other escape methods are optionally employed.

Optionally, the entropy modifier is operable to handle the
input stream of data (D3 or D4) using the maximum run
length in manner which is dynamically varied as a function of
a nature of the stream of input data (D3 or D4).

Optionally, the entropy modifier is operable to handle a
value of a first bit in the stream of input data (D3 or D4)
separately from a sequence of data bits. More optionally, the
entropy modifier is operable to handle the value of the first bit
as separately encoded relative to the sequence of data values
that represent a continuous amount of similar bits. More
optionally, the entropy modifier is implemented such that the
atleast one escape code is implemented as a “0” value within
the entropy modifier.

Optionally, the entropy modifier is operable to decode data
elements present in the input data (D3 or D4) and apply an
inverse entropy modification to generate the output data (D5)
as a decoded bit stream.

Optionally, the entropy modifier is utilized in conjunction
with one or more coding arrangements for handling the
stream of input data bits (D3), wherein the one or more coding
arrangements include one or more of: ODelta coder, RLE
coding, VLC coding, Huffman coding, Delta coding, Arith-
metic coding.

Optionally, the entropy modifier is operable to handle the
stream of input data bits (D3 or D4) in a plurality of parts
which are separately encoded or decoded. More optionally,
the entropy modifier is operable to handle the plurality of
parts in a temporally parallel manner, namely by way of
parallel execution. More optionally, the entropy modifier is

US §,754,791 Bl

5

operable to handle the plurality of parts by using maximum
run lengths which are mutually different for one or more of
the parts.

Optionally, the entropy modifier is implemented to func-
tion as a decoder for decompressing the stream of input data
(D3 or D4) to generate the entropy-modified output (D5).

Optionally, the entropy modifier is operable to assist to
transform symbols present in the input data (D3 or D4) to a bit
string present in the output data (D0S5).

Optionally, the entropy modifier includes computing hard-
ware, wherein the computing hardware is operable to execute
one or more software products recorded on machine-readable
data storage media for processing the stream of input data (D3
or D4) to generate the output data (D5).

According to a third aspect of the invention, there is pro-
vided a method of using an entropy modifier to encode a
stream of input data bits (D1) having a first entropy for gen-
erating corresponding entropy-modified output data (D2)
having a second entropy, wherein the method includes:

using the entropy modifier to process the stream of input

data bits (D1) to handle groups of mutually similar bits
and the value of the first bit, and one or more maximum
run lengths of the groups of mutually similar bits.

Optionally, the method includes using the entropy modifier
to control one or more maximum run lengths of the groups of
mutually similar bits by using at least one escape code. More
optionally, the method includes using a plurality of escape
codes to control the one or more maximum run lengths of the
groups of mutually similar bits. More optionally, the method
includes using the entropy modifier to handle the input stream
of data (D1) using the maximum run length in manner which
is dynamically varied as a function of a nature of the stream of
input data (D1).

Optionally, the method includes using the entropy modifier
to handle a value of a first bit in the stream of input data (D1)
separately from a sequence of data bits. More optionally, the
method includes using the entropy modifier to handle the
value of the first bit as separately encoded relative to the
sequence of data values that represent a continuous amount of
similar bits.

Optionally, the method is implemented such that the at
least one escape code is implemented as a “0” value within the
entropy modifier.

Optionally, the method includes using the entropy modifier
in conjunction with one or more coding arrangements for
handling the stream of input data bits (D1), wherein the one or
more coding arrangements include one or more of: ODelta
coder, RLE coding, VL.C coding, Huffman coding, Delta
coding, Arithmetic coding.

Optionally, the method includes using the entropy modifier
to handle the stream of input data bits (D1) in a plurality of
parts which are separately encoded or decoded.

Optionally, the method includes using the entropy modifier
to handle the plurality of parts in a temporally parallel man-
ner, namely by way of parallel execution.

Optionally, the method includes using the entropy modifier
to handle the plurality of parts by using maximum run lengths
which are mutually different for one or more of the parts.

Optionally, the method includes implementing the entropy
modifier to function as an encoder for compressing the stream
of input data (D1) to generate the entropy-modified output
(D2, D3). More optionally, the method includes using the
entropy modifier to assist to transform a bit string present in
the input data (D1) to symbols present in the entropy modified
output data (D2). More optionally, the method includes
implementing the entropy modifier to include computing
hardware, wherein the computing hardware is operable to

40

45

55

6

execute one or more software products recorded on machine-
readable data storage media for processing the stream of input
data (D1) to generate the output data (D2).

According to a fourth aspect of the invention, there is
provided a method of using an entropy modifier to decode a
stream of input data bits (D3 or D4) having a first entropy for
generating corresponding entropy-modified output data (D5)
having a second entropy, wherein the method includes:

Using the entropy modifier to process the stream of input

databits (D3 or D4) to handle groups of mutually similar
bits and the value of the first bit, and one or more maxi-
mum run lengths of the groups of mutually similar bits.

Optionally, the method includes using the entropy modifier
to process one or more maximum run lengths of the groups of
mutually similar bits by using at least one escape code. More
optionally, the method includes processing the one or more
maximum run lengths of the groups of mutually similar bits
by using a plurality of escape codes.

Optionally, the method includes using the entropy modifier
to handle the input stream of data (D3 or D4) using the
maximum run length in manner which is dynamically varied
as a function of anature of the stream of input data (D3 or D4).

Optionally, the method includes using the entropy modifier
to handle a value of a first bit in the stream of input data (D3
or D4) separately from a sequence of data bits.

More optionally, the method includes using the entropy
modifier to handle the value of the first bit as separately
encoded relative to the sequence of data values that represent
a continuous amount of similar bits. More optionally, the
method is implemented such that the at least one escape code
1s implemented as a “0” value within the entropy modifier.

Optionally, the method includes using the entropy modifier
to decode data elements present in the input data (D3 or D4)
and apply an inverse entropy modification to generate the
output data (D5) as a decoded bit stream.

Optionally, the method includes using the entropy modifier
in conjunction with one or more coding arrangements for
handling the stream of input data bits (D3), wherein the one or
more coding arrangements include one or more of: ODelta
coder, RLE coding, VLC coding, Huffman coding, Delta
coding, Arithmetic coding.

Optionally, the method includes using the entropy modifier
to handle the stream of input data bits (D3 or D4) in a plurality
of parts which are separately encoded or decoded. More
optionally, the method includes using the entropy modifier to
handle the plurality of parts in a temporally parallel manner,
namely by way of parallel execution.

Optionally, the method includes using the entropy modifier
to handle the plurality of parts by using maximum run lengths
which are mutually different for one or more of the parts.

Optionally, the method includes using the entropy modifier
to function as a decoder for decompressing the stream of input
data (D3 or D4)to generate the entropy-modified output (D5).

Optionally, the method includes using the entropy modifier
to assist to transform symbols present in the input data (D3 or
D4) to a bit string present in the output data (D5).

Optionally, the method includes implementing the entropy
modifier to computing hardware, wherein the computing
hardware is operable to execute one or more software prod-
ucts recorded on machine-readable data storage media for
processing the stream of input data (D3 or D4) to generate the
output data (D5).

According to a fifth aspect of the invention, there is pro-
vided a software product recorded on machine-readable data
storage media, wherein the software product is executable
upon computing hardware for executing the method pursuant
to the third aspect of the invention.

US §,754,791 Bl

7

According to a sixth aspect of the invention, there is pro-
vided a software product recorded on machine-readable data
storage media, wherein the software product is executable
upon computing hardware for executing the method pursuant
to the fourth aspect of the invention.

It will be appreciated that features of the invention are
susceptible to being combined in various combinations with-
out departing from the scope of the invention as defined by the
appended claims.

DESCRIPTION OF THE DIAGRAMS

Embodiments of the present invention will now be
described, by way of example only, with reference to the
following diagram wherein:

FIG. 1 is an illustration of a codec system including
entropy modifiers pursuant to the present invention.

In the accompanying diagrams, an underlined number is
employed to represent an item over which the underlined
number is positioned or an item to which the underlined
number is adjacent. A non-underlined number relates to an
item identified by a line linking the non-underlined number to
the item. When a number is non-underlined and accompanied
by an associated arrow, the non-underlined number is used to
identify a general item at which the arrow is pointing.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

In overview, the present invention is concerned with an
entropy modifier. Referring to FIG. 1, input data D1 is sup-
plied to a first entropy modifier 10 which transforms the input
data to generate corresponding transformed data D2; the data
D2 is optionally mutually different in size relative to the data
D1, depending upon a nature of transformation employed in
the firstentropy modifier 10, and has reduced entropy, relative
to the data D2. Optionally, the data D2 is further coded via an
encoding stage 20 to generate final encoded output data D3;
when the encoding stage 20 is not employed, data D2 and D3
are mutually similar. The encoded output data D3 is stored in
data memory 30 and/or transmitted via a data communication
network 40. Moreover, the output data D3 is communicated
directly to a second entropy modifier 60, or optionally via a
decoding stage 50 to the second entropy modifier 60 when the
aforesaid encoding stage 20 is employed such that data D4 is
substantially similar to the data D2. The second entropy
modifier 60 generates decoded output data DS which is sub-
stantially similar to the input data D1. Thus, the first entropy
modifier 10 and the second entropy modifier 60 perform
mutually inverse entropy modifying operations, for example
as in a codec configuration.

Optionally, the first and second entropy modifiers 10, 60
are operable to process data therethrough as a plurality of
parallel streams of data for achieving faster entropy modifi-
cation, for example faster encoding and/or decoding. Such
faster processing using a plurality of parallel data streams is
beneficial when handling large volumes of data, for example
streamed video content from data servers, for example from
Internet-based servers providing cable TV services.

The first entropy modifier 10 therefore consumes a stream
of bits present in the data D1 and creates from them data
elements whose entropy is reduced compared to the entropy
ofthe input data D1. These modified data elements are option-
ally further encoded in the encoding stage 20 by employing
methods such as Variable-Length-Coding (VLC), Huffman
coding, Arithmetic coding, Run-Length-Encoding (RLC)
and similar. The entropy modification executed within the

10

15

20

25

30

35

40

45

50

55

60

65

8

first entropy 10 is reversible and beneficially lossless, mutatis
mutandis also in the second entropy modifier 60. Moreover,
the entropy modification executed within the first entropy
modifier 10 at least stores a new data element containing a
continuous amount of similar bits after every change of bit
value.

When executing entropy reduction as aforementioned,
there has to be provided an indication of a first bit in any given
sequence. Moreover, there also has to be provided an escape
code that enables a limited number of codes to be employed
forrepresenting data elements, namely a maximum run, when
the data elements are to be compressed. Optionally, the
escape code is represented by digit “0”; the escape code
denotes a highest value that the data element can represent,
namely a maximum run, and it additionally conveys informa-
tion that the bit value is continued. Beneficially, when imple-
menting embodiments of the present invention, one or more
codes corresponding to a maximum run of bits are varied,
depending upon the data and its properties; in other words, the
one or more codes corresponding to the maximum run are
adaptively varied depending upon the data to be compressed.
Optionally, the entropy modifiers 10, 60 utilize pre- and/or
post-processing methods, for example an ODelta operator,
that operates for 1-bit data. However, for the entropy modifi-
ers 10, 60, data being processed therethrough can be of any
kind, for example image data, video data, audio data, refer-
ence data, masks, split bits, sign bits, and compressed data,
namely any sort of data that can be processed in bits. Option-
ally, bytes or words of any data can be inserted into a stream
that includes bits, and can be processed through the entropy
modifiers 10, 60. In the following, “entropy modifier” and
“inverse entropy modifier” will be abbreviated to EM, [EM
respectfully, namely for use in providing data compression
and data decompression respectively, namely executed via
the first and second entropy modifiers 10, 60 respectfully.

The entropy modifiers 10, 60 optionally are implemented
using computing hardware (CPU) 70 which is operable to
execute one or more software products 80 recorded on
machine-readable data storage media 90 for implementing
methods pursuant to the present invention.

Embodiments of the present invention will now be
described in greater detail. The entropy modifiers 10, 60
employ one parameter that defines a maximum run number of
0’s or 1’s for example present in a stream of data bits. More-
over, entropy modifiers 10, 60 also employ an escape element
that is used when the run of bits in the bit stream is larger than
the maximum run in the bit stream. Beneficially, the maxi-
mum run length L is set to one or more in a series:

I=2"-1 Eq.2

wherein n is an integer with values n=2, 3,

This corresponds to a series =3, 7, 15, 31, . . ., but is
beneficially any number greater than 1. Beneficially, the
escape element is chosento be a value “0”, because a plurality
of zero similar bits is not possible when implementing the
invention. It will be appreciated that if the number of similar
bits is decreased by one count as above, then the escape
element is beneficially the maximum run. The entropy modi-
fier 10 requires, when compression of a stream of bits is
desired, for a first bit in the stream to be known, so that the
corresponding compressed bit stream can be subsequently
decoded, namely decompressed. reversibly in the entropy
modifier 60.

For further elucidating embodiments of the present inven-
tion, an example will now be described. Below is presented a
first example of a manner in which entropy encoding pursuant

US §,754,791 Bl

9

to the present invention functions in a case where the maxi-
mum run length is 3 bits and the escape code is “0”:

An original stream of bits is as follows:
01100111111100001000111111
which includes twenty six bits in total in the stream, of which
there are sixteen “1°s” and ten “0’s”.

The entropy E associated with this original stream of bits is
calculable as follows:

Eq. 3

26 26
E= 16*10g10(E] + 10*10g10(

— =752
10) 7.52339

From Equation 3 (Eq. 3), the minimum number of bits Mg
that are needed for encoding the original stream of bits having
such an associated entropy E is calculable pursuant to a
source coding theorem as follows:

E . Eq. 4
Mg = —— = 24.99125 bits
logyo(2)

The aforementioned original stream of bits is encodable by
applying a method pursuant to the present invention to gen-
erate a corresponding sequence of codes:

The first bit value is “0” and the continuous amount of
similar bits (=entropy modified symbols) are:

12274136

When the escape symbol “0” is used for limiting the num-
ber of different symbols to 4 different values from 0 (escape)
to 3 (maximum run length), and also the first bit value has
been added as the first symbol to the stream, we thereby will
get:

0122001011303
which includes thirteen codes in total in the stream, of which
there are five “0°s”, four “1°s”, two “2°s” and two “3s”.

The entropy E associated with this stream of codes is
calculable as follows:

13 13 13 Eg. 5
E= 5*loglo(?]+4*(I]+2*2*10g10(7] =7.37405

from which the minimum number of bits M, to represent such
entropy E in a lossless manner is calculable as follows:

My = — = 2449608 bit. Fa. 6
= = Z24. 1ts
8 log;(2)

It will be appreciated from this example that entropy in the
series of codes is less than the original stream of bits, and that
fewer bits are required to represent the series of codes.
Optionally, entropy-modified series of codes are generated as
outlined in Table 1:

TABLE 1

inverse of entropy-modified codes

Code Designation
0 Tirst bit value
1 Number of first bits: one “0”
2 Number of bits after change: two “1’s”

w

10

15

20

25

30

35

40

45

50

55

60

65

10
TABLE 1-continued

inverse of entropy-modified codes

Code Designation

2 Number of bits after change: two “0’s”

0 Escape code representative of four or more mutually similar bits,
for example three “1’s”

0 Escape code representative of four or more mutually similar bits,
for example three “1°s”

1 Number of bits after change, (7)-2*(escape bits), wherein there are
three escape bits, namely one “1”

0 Escape code representative of four or more mutually similar bits,
for example three “0°s”

1 Number of bits after change, (4)-1*(escape bits), wherein there are
three escape bits, namely one “0”

1 Number of bits after change: one “1”

3 Number of bits after change: three “0’s”

0 Escape code representative of four of more mutually similar bits,
namely three “1’s”

3 Number of bits after change (6)-1* (escape bits), wherein there are
three escape bits, namely three “1’s”

Table 1 is merely an example, and implementation of
embodiments of the present invention is able to generate
many alternative examples. For example, other maximum run
values and other escape codes can be employed. Moreover,
the first bit is optionally inserted separately, and it does not
then influence the actual codes employed and their associated
compression to any significant extent.

Optionally, the entropy modifiers 10, 60 are operable, in
certain circumstances, to increase entropy, and it is therefore
beneficial for output data from the entropy modifiers 10, 60 to
be monitored, for example using a signal monitoring arrange-
ment, to determine whether or not an adopted coding regime
provides a desired degree of data compression. In an event
that entropy is increased for a given type of data to be com-
municated, the signal monitoring arrangement can be
employed to control operation of the entropy modifiers 10, 60
in an adaptive manner to ensure that a desired modification in
entropy therethrough is achieved in operation. For example,
for a given type of data, it is desirable that the entropy modi-
fier 10 be used to apply one or more test encoding regimes
when commencing encoding of a data stream in order to
search for an optimal value of maximum run to employ for
obtaining optimal data compression; the maximum run can
have amajor impact on entropy E. Additionally, the entropy E
associated of the first bit value in a given data stream has a
major impact on the entropy E when the length of given data
stream is relatively short; for example, the first bit value is
beneficially transmitted separately from other code words
used to represent the given data stream.

As illustrated in FIG. 1, it is beneficial that the entropy
modifiers 10, 60 be employed in combination with entropy
coding methods such as Variable-Length-Coding (VLC),
Huffman coding, Run-Length-Encoding (RLE) and Arith-
metic coding. Alternatively, other types of entropy modifiers
such as Delta coding are beneficially employed in combina-
tion therewith. Such entropy coding methods are beneficially
employed after the entropy modifier 10, and before the
entropy modifier 60; alternatively, or additionally, such
entropy coding methods are beneficially employed before the
entropy modifier 10, and after the entropy modifier 60; for
example, in an event that original data to be encoded is alpha-
numeric, numbers, bytes or words, the original data is coded
efficiently with additional coding as provided in Table 2:

US §,754,791 Bl

11
TABLE 2

additional coding employable with an entropy modifier
pursuant to the present invention

Additional
encoding method ~ Situation of use

RLE When the given data stream includes continuous
streams of same data values
Delta When the given data stream includes data values that
are similar or mutually substantially similar or
changes similarly
VLC/Huffman/ When the given data stream includes many mutually
Arithmetic similar data values

Optionally, the entropy modifiers 10, 60 are employed in a
recursive manner.

As aforementioned, entropy modifiers pursuant to the
present invention are beneficially employed in conjunction
with other types of entropy modifiers, wherein the other types
of entropy modifiers are optionally known types. Known
types include Delta coding for example. Typically, Delta cod-
ing is employed for processing numerical values that are
provided in a format of bytes or words. An example of the
entropy modifier of the invention employed in combination
with Delta coding will next be described.

For further elucidating the present invention, two examples
will be described, one example without use of an entropy
modifier pursuant to the present invention and the other uti-
lizing an entropy modifier pursuant to the present invention.
In the example, a maximum run length of 7 bits is employed
with an associated escape code being “0”. When employing a
1-bit ODelta-type operator, a first bit in an encoded sequence
is the same as a corresponding original data bit present in an
original data stream to be encoded. Optionally, the 1-bit
ODelta operation can be run recursively.

Example 1

In an original stream of data bits, there are included thirty
seven bits in total, namely seventeen “1’s” and twenty “0°s™:
010101100100010100000000000111111
11111
wherein a corresponding associated entropy E is calculable as
follows:

37 37 Eq. 7
E= 17*1og10(ﬁ]+20*1og10(%] = 11.08523

corresponding to 36.82 bits for computed M, namely sub-
stantially 37 bits as provided above. It will be appreciated that
Equation 7 (Eq. 7) corresponds to the amount of bits in the
original bit stream.

An equivalent entropy modified (EM) code is as follows, in
agenerally similar manner to that employed to generate Table
1:

01111122131110403
wherein an associated entropy E is calculable as follows:

17 17 Eq 8
E= 3*10gw(?) +9 *lo%o(g) +

17 17
2%2% loglo(7] + 1*10%10(T) =9.69397

w

10

15

20

25

30

35

40

45

50

55

60

65

12

Itwill be appreciated that Equation 8 (Eq. 8) corresponds to
the amount of bits after the entropy modification. Moreover,
it will be appreciated that this amount of bits is less than that
associated with Equation 7 (Eq. 7).

However, when the original stream of bits above is subject
to an ODelta operation, a corresponding modified stream of
bits is generated which includes thirty seven bits, in which
there are thirteen “1°s” and twenty four “0’s™:
011111010110011110000000000100000
0000
wherein a corresponding entropy E is calculable as follows:

37 37 Eg. 9
E= 13*1og10(ﬁ] +24*10g10(ﬂ] = 1041713

namely smaller than the entropy E associated with the origi-
nal stream of bits (Eg. 7). When this ODelta-processed stream
of data bits above is subject to entropy modification pursuant
to the present invention, there is thereby obtained a corre-
sponding encoded sequence of codes such as:
01511122403102

wherein a corresponding entropy E is calculable as follows:

14 14 14 , Eq. 10
E=2+3 *loglo(?] + S*IOgIO(?] +3%1 *IOgIO(T] =9.68822

which is less than the entropy E of the original stream (Eq. 7)
of data bits including 37 bits in total. Moreover, it will be
appreciated that this amount ofbits is less than that associated
with Equation 8 (Eq. 8) or Equation 9 (Eq. 9).

This example illustrates that it is possible to compress the
original stream of data bits efficiently when the original
stream of data is firstly compressed using a 1-bit ODelta
operator and then with an entropy modifier pursuant to the
present invention.

Example 2

The aforesaid original bit stream in Example 1 is divided
into two parts, and benefits of entropy modifying pursuant to
the present invention are optimized by selecting a best com-
bination of these two resulting streams of data. The value of
first bit of the entropy modifier is transmitted separately and
is not inserted into a resulting entropy-reduced series of
codes. A firstentropy modification result obtainable is similar
to Example 1, wherein the first bit is also set as a “1” code
word. A similar maximum run of seven bits is employed, and
“0” is employed for the escape code, as provided in Table 3:

TABLE 3

Example 2 entropy modification

Entropy, Maximum bits

Bit stream E to encode, My
Original bitspart1 010101100100 4.7621 15.82 bits
(16 bits. with seven 0101
“1’s” and none
“0’s”):
Entropy modified 0111112213111 5.2910 17.58 bits
(EM)
Entropy modified (0)11111122131 3.7599 13.49 bits
(EM) 111
ODelta modified 0111110101100 43158 14.34 bits

111

US §,754,791 Bl

13
TABLE 3-continued

Example 2 entropy modification

Entropy, ~Maximum bits
Bit stream E to encode, My
EM 15111223 42144 15.00 bits
Original bits part2 00000000000 6.3113 20.97 bits
(21 bits, witheleven 1111111111
“1'¢" and ten “07s”):
Entropy modified 00403 1.08062 6.00/7.00 bits
(EM)
ODelta 000000000001 1.7460 5.80 bits
000000000
EM 0)04102 2.8928 9.61/10.61 bits

From Table 3, it will be appreciated that a decrease in
entropy is achieved, which is beneficially when data compres-
sion is to be achieved. A best compression of data is achieved
when the first part stream of data is entropy coded from data
that is generated from the original stream of data which is
entropy-modified, namely is represented using 13.49 bits,
and the second part is entropy-modified via 1-bit ODelta
coding, namely is represented using 5.80 bits, to be express-
ible using 19.29 bits compared to original 37 bits being
required; this represents a considerable compression of data.
Whenthe second data stream is coded, there is no need to send
the value of the first bit because it can be known based on the
first data stream. For that reason, there are two different
values shown in the Table 3, partitioned by “/”; the first for
continuation situation (i.e. value of first bit not sent) and the
second for the case where the data stream starts with this kind
of bits combination. It will be appreciated that although, in
this example, the ODelta coding alone reduces the entropy of
data, namely mostly for the second part of the data, it does
provide beneficial entropy reduction also in combination with
the entropy modifiers 10, 60. Here entropy-modified original
data causes a smaller entropy than entropy-modified data that
is first processed with ODelta coding, namely 6.00 bits<9.61
bits. In a practical coding solution, entropy-modified original
data is optionally beneficially compressed more efficiently
than the ODelta coded data, although the entropy of the latter
one is smaller, namely 5.80 bits<6.00 bits; 1-bit data is not so
practical for implementations of entropy encoders, although
Arithmetic coding, amongst others, is beneficially employed
also for compressing 1-bit data. Optionally, the original
stream of bits is split into more than two parts, prior to being
subject to entropy modification processes for achieving data
compression.

Optionally, splitting of the original stream of data bits to
one or more streams, namely parts, can be executed automati-
cally by a method including:

(a) analyzing an entropy associated with the original stream
of data bits;

(b) splitting the original stream of data into two or more parts,
depending upon a function of the analyzed entropy of the
original stream of data bits;

(¢) applying one of more entropy modifying operations to the
two or more parts to generate one or more corresponding
entropy-modified parts; and

(d) combining the one or more entropy-modified parts
together to generate compressed encoded output data.
The present invention is also concerned with a method of

decoding the encoded output data, wherein an inverse of steps

(a) to (d) are utilized. Optionally, the method includes split-

ting or combining data blocks present in the original stream of

bits so that encoding is implemented more efficiently, for

15

40

45

60

65

14

example for achieving an enhanced compression ratio and/or
achieving substantially lossless compression.

Optionally, step (b) is implemented in a coarse manner,
namely just dividing up the original stream of data bits when
multiple long run sections are encountered in the original
stream of data bits, namely after or between regions of the
original stream of data bits where there is a big enough region
of the stream of data bits where the data bits vary sequentially
in a rapid manner.

Optionally, to generate an encoded bit stream pursuant to
the present invention, an original stream of data bits is pro-
cessed to provide intermediate encoded data, for example via
application of VLC, Arithmetic coding and/or RLE, which is
then subjected to entropy modification pursuant to the present
invention to generate output encoded data which is com-
pressed and reduced in entropy; such as approach is illus-
trated in FIG. 1. Considerable speed optimization during data
compression is thereby achieved, which corresponds to less
computing power being necessary when the present invention
is implemented by way of one or more software products
recorded on machine-readable data storage media, wherein
the one or more software products are executable upon com-
puting hardware for implementing an entropy-modifying
encoder, mutatis mutandis entropy-modifying decoder.
Optionally, entropy optimizations are implemented such that
an original bit, alphabetic, number, byte, word in the original
steam of data bits is first coded using some other method, and
after that, entropy modification pursuant to the present inven-
tion applied to generate encoded output data.

In contemporary known run-length encoding (RLE) meth-
ods, there 1s generated a given value, and then thereafter
corresponding data indicative of the number of occurrences
of this given value, before it is followed by another subse-
quent value. Such an RLE method is continued as long as
input data to be encoded is available, namely one value after
another is encoded in sequence. In contradistinction, the
present invention derives from an observation that, if only
1-bit values are employed, there is no need to add “0” and “1”
data values into a stream of data to be encoded, because they
occur alternately in turn; thus, it is sufficient that only the first
value in a given sequence be expressed in a transmission of
encoded data. Thus, the present invention is akin to RLE
coding but employs a 1-bit data stream as aforementioned.

When implementing embodiments of the present inven-
tion, the escape code is an addition that enables more efficient
usage of practical encoding methods to be employed. Benefi-
cially, embodiments of the present invention include sending
one or more coding tables from an encoder to a corresponding
decoder to assist with decoding of encoded data sent from the
encoder and received at the decoder.

Escape codes which are employed for implementing
embodiments of the present invention are susceptible to being
implemented in several different ways. For example, in a case
of a run-length symbol or digit that continues with a “0”
value, satisfactory encoding is achievable. However, situa-
tions potentially arise where these amount values are small,
while conversely, occasionally, very large values may occur;
in these situations, the escape code is beneficially set to a next
value that is not yet used, or allocated for use as a code word.
For example, if a maximum run-length employed is seven bits
or elements, and the escape code is “0”, then a code word “8”
1s used during generation of an encoded data stream; this new
escape code only adds one new code word, and after this, the
actual number of symbols is expressible using any method,
for example in 1, 2 and/or 3 bytes, or using half-bytes (i.e.
“nibbles”). Optionally, the actual number of symbols is trans-
mitted without being compressed. Optionally, the actual

US §,754,791 Bl

15

number of symbols is combined with the maximum run-
length value and then compressed together with other data
values in an entropy compressor, namely entropy modifier.

When selecting a suitable escape value for use in embodi-
ments of the present invention, it is advantageous to express at
once a total number of adjacent elements, and therefore, after
invoking this escape value, the same bit is not continued
subsequently in contradistinction to use of an escape value.
Such a new form of termination provides an escape, namely
code word, that is useable in addition to a continuous escape
method as aforementioned; alternatively, such a new escape
code is useable as an only alternative, and, in such case, its
code word is beneficially settable to a value “0”. Similarly, if
a given data value of this terminating code is often small, but
occasionally large, it is beneficial to express the number of
consecutive similar symbols present in data with an alternat-
ing number of bytes or nibbles. One bit of such a byte, for
example a least significant bit (LSB) or most significant bit
(MSB) is beneficially reserved to indicate the termination of
the number, for example bit string, and thus beneficially its
code word is setto a value “0” or “1” in a case where the value
ends, in other cases, the value continues.

Inorder to elucidate the foregoing, an example of function-
ality of an escape code will next be described in a situation
wherein both types of escape are utilized. In the example, a
maximum run of 14 elements is employed, with a code word
for a continuous escape being denoted by 15, wherein a code
word for a terminating escape is 0. Moreover, values for the
amounts of consecutive similar symbols or bits are:

9, 1024, 16, 9, 12, 2000, 7, 20, 21, 6,8, 120, 12,

Furthermore, the example utilizes half-bytes (i.e. nibbles)
of which a most significant bit (MSB) of value “1” is
employed to indicate the termination of the number, namely
bit string. Beneficially, if the terminating escape is employed,
it is feasible to subtract from the number, namely the bit
stream, the following:

(bit string)-(MAXRUN+1)

For example:

1024ba:e 10:>

1024 o—(14 10+1)=>1009
OOIbase 10 number expressed for nibbles:>
1+8(Terminates) 7 6 1). Thus, the example can be coded as:

901679152912010711715615768015912.

In this example, the entropy modifiers 10, 60 need to be
able to interpret code words having values in a range 0 to 15.
It is feasible to express this example by using merely a single
escape code, wherein a code word “0” corresponds to an
escape code that also indicates a terminating escape; in such
an alternative example of a single type of escape code, the
continuous escape is not used, and the other parameters are as
above, namely:
90167909912010711701301468015912,
wherein the entropy modifiers 10, 60 are required to recog-
nize code words in a range of 0 to 14. This alternative example
is optionally expressed by using only the continuous escape
expressed by a code word “0” and employing a maximum run
length of 14, resulting in a following form of sequence of
codes:
973%0202912142x0127067 6 8 8x0 8 12.

The best coding solution can be selected based on the
Entropy that is calculated for all the three solutions sepa-
rately.

Embodiments of the present invention for providing
entropy modification (EM) and inverse entropy modification
(IEM) will next be described. However, other embodiments
are also feasible within the scope of the present invention, for
example corresponding entropy modifiers based upon digital

=1 111 110

base base base

w

30

40

45

16

hardware, for example variable-state-machines, ASIC’s and
similar. “GetBit”, “SetBit” and “ClearBit” instructions in the
following examples function always to update “HeaderBits”
values. Moreover, a “HeaderIndex” value is also updated
when a next bit will be in a next byte. In the following
examples, which are software-product based, the first bit is
stored as one code. Optionally, in better implementations, the
first bit value is separated from the codes as aforementioned,
for example with reference to Table 3. A corresponding
decoder is beneficially optimized by writing multiple bits
together to a destination byte contributing to decoded output
data. It will be appreciated that “MaxRun” provided in fol-
lowing example embodiments is similar to (maximum run
length+1); for example, when a maximum run length of 7 bits
is employed, a value of 8 is given as function parameter
“AMaxRun” in the following embodiments.

function EncoldeBitRLE1u{APtrSre : PByte: ASrcBltLen :
Cardinal: APtrDst : PByte: var ADstBitOffset : Cardinal: AMaxRun :
Cardinal) : Boolean:
var
[HeaderIndex, [HeaderBits, IRunLength, |Index : Cardinal;
bBit. bLestBit : Boolean;
begin
/I Reset offsets
ADstBitOffset : = 0;
[HeaderIndex : = 0;
[HeaderBits : = 0;
// Read first bit, write it to destination and initialize run
bLastBit : = GetBit(APtrSre, @ HeaderIndex, @ |HeaderBits);
APtrDst[(ADsBitOffset + 7) div 8] : = Byte(bLastBit);
Inc(ADstBitOffset, 8);
RunLength := 1;
/I Go through bits
for [Index :=1 to AsrcBitLen -1 do
begin
// Read bit
bBit := GetBit(APtrSrc, @|HeaderIndex, @ HeaderBits);
// Same bit as previous
if (bBit = bLastBit) then
begin
// Increment run of bits
Ine(lRunLength, 1);
// Escape (same bits continuous over maximum run)
if{|RunLength = AMaxRun; then
begin
/I 'Write escape code to destination and initialize run
APtuDst[ADstBitOffset + 7) div 8] :=0;
Inc(ADstBitOffset, 8);

|RunLength :=1;
end
end
// Different bit as previous
else
begin

/I Change bit write run of bits to destination and initialize run
bLastBit := bBit;
APtDst[(ADsBitOffset + 7) div 8] := IRunLength;
Inc(ADstBItOffset,);
IRunLength :=1;
end;
end;
//Write last bits
APtrDst[(ADsBitOffset + 7) div 8] := IRunLength;
Inc(ADstBitOffset, 8);
end;
function DecodeBitRLE 1u(APtrSrc : PByte; ASreBitOffset :
Cardinal; APtrDst : PByte; var ADstBitLen : Cardinal; AMaxRun :
Cardinal) : Boolean;
var
bBit : Boolean;
Value : Byte;
IS1cBitOffset, [Index, [RunLength, |HeaderIndex, [HeaderBits,
|DstBitOffset : Cardinal;
begin
// Reset srebitoffset, dstbitoffset and clear first destination byte

US §,754,791 Bl

17

-continued

ISreBitOffset := 0;

DstBitOffset := 0;

[HeaderIndex := 0;

[HeaderBits := 0;

APtrDst[0] :=0;

j/ Read first bit value (= byte) and update srcbitoffset

bBit := (APtrSrc[(ISreBitOffset + 7) div 8] > 0);

Ine(ISreBitOffset, 8);

j/ Go through all Bytes until source is finished or destination buffer
is full while ((SreBitOffset < ASreBitOffset) and (IDstBitOffset <
ADstBitLen)) do

begin

/! Read runlength and update srebitoffset
[RunLength := APtrSrc[(ISreBitOffset + 7} div 8];
Inc(ISrcBitOffset, 8);

/! Process escape code

if (RunLength = 0) then

begin

j/ Set bits for escape

for IIndex := 1 to AMaxRun - 1 do

begin

/! Set bit if destination buffer is not full
if (IDstBitOffset < ADstBitLen) then
begin
// Set bit and/or go to next bit
if (bBit) then
SetBit(APtrDst, @|HeaderIndex, @/HeaderBits)
else ClearBit(APtDst, @ [HeaderIndex, @|HeaderBits);
Ine(IDstBirOffset, 1);
end;
end;
end
// Process runlength
else
begin

j/ Set bits for run

for Index =0 to [RunLength - 1 do

begin

/! Set bit if destination buffer is not full
if (IDstBitOffset < ADstBitLen) then
begin
// Set bit and/or go to next bit
if (bBit) then
SetBit(APtrDst, @|HeaderIndex, @/HeaderBits)
else ClearBit(APttDst, @ [HeaderIndex, @|HeaderBits);
Ine(IDstBirOffset, 1);
end;

end;

j/ Change bit value

if (bBit) then

bBit :=False
else bBit := True;
end;
end;

Even though it is not possible for an entropy coding
method, for example VLC, Huffiman coding, Arithmetic cod-
ing, RLE coding and so forth, to compress data to a smaller
size than its entropy allows, namely without using some form
of prediction or other additional information, namely without
loss of information occurring, this does not mean in all cases
that a greatest compression of data in practice corresponds to
a smallest entropy; in other words, in practice, entropy and
data compression are not exactly identical concepts. Decod-
ing encoded data back to its corresponding original form
always demands some additional information, the transmis-
sion of which sometimes demands an unreasonable amount
of extra information in addition to actual data to be com-
pressed. When large quantities of data are to be handled, a
smallest entropy usually corresponds to a best data compres-
sion, but when small amounts of data are to be handled,
compressing the data is not always so straightforward; for
example, 1-bit data is usually difficult to compress efficiently,
and therefore, the entropy modifiers 10, 60 that is operable to
process 1-bit information is potentially, commercially, a very

w

10

15

20

25

30

35

40

45

50

55

60

65

18

valuable invention. Moreover, processing data in a format
which is more easily compressible often results in a reduction
in entropy of the formatted data in comparison to correspond-
ing original data prior to formatting processes being applied.

As aforementioned, it is often efficient if a first bit value in
a sequence of code words representing encoded data is trans-
mitted separately from those values that indicate the number
of consecutive symbols or bits. However, such separate trans-
mission does not need to correspond to a completely separate
communication. In the following examples, despite the sepa-
rate handling of the first bit, there is still a need to add the
amount of the first bit to the total amount of the successive
elements, because it would otherwise not be possible to dis-
tinguish between the following examples:
00landO1or
110and 10,
without setting the first element amount number to zero,
which is not desirable ifit is to be employed for implemented
the aforementioned escape code, namely for use when the
number of consecutive similar signals exceeds the maximum
run length in the examples.

InFIG. 1, the size of the data D2 is not necessarily smaller
than the size of the data D1. but its entropy is smaller, even
though the data D1 and D2 include mutually similar informa-
tion. The size of the data D2 is dependent run-lengths
employed. For example, in the data DI, the size of data
elements is 1 bit, whereas the size of the data D2 depends on
the size of run length employed. For example, if the data D1
has a size of 104 bits, and an entropy E=80, the data D1 can be
converted by the entropy modifier 10 by using a maximum
run-length of 7 elements in the data D2, which has 40 ele-
ments, namely 3-bit elements having a value in a range 0o 0 to
7, and an entropy E=50, then the data D2 has a size 40*3
bits=120 bits; in such an example, the data D2 is larger in size
than the data D1. The encoding stage 20 beneficially employs
VLC transformations which is able to compress the data D2
into 52 bits to provide the data D3. Thus, it is to be appreciated
that the entropy modifiers 10, 60 do not always provide data
compression and decompression respectively, but are capable
of providing data compression and decompression when
employed with other encoding stages.

Embodiments of the present invention are beneficially
included as component parts of communication systems,
audio-visual consumer products, scientific image-processing
equipment, computing devices, wireless-enabled communi-
cation devices such as smart phones, digital cameras, digital
surveillance equipment, interactive computer games, to men-
tion a few examples. Increased data compression is capable of
reducing data storage requirements, saving energy and
enables faster communication to be achieved, all of which
would be regarded as beneficial technical effects employable
in industry, for example. Moreover, the embodiments are
implementable in software products, hardware, or any com-
bination thereof. The software products are optionally down-
loadable as software applications, namely “software apps™.

Modifications to embodiments of the invention described
in the foregoing are possible without departing from the scope
of the invention as defined by the accompanying claims.

”, “comprising”, “incorporat-

Expressions such as “including”,

ing”, “consisting of”, “have”, “is” used to describe and claim
the present invention are intended to be construed in a non-
exclusive manner, namely allowing for items, components or
elements not explicitly described also to be present. Refer-
ence to the singular is also to be construed to relate to the
plural. Numerals included within parentheses in the accom-

panying claims are intended to assist understanding of the

US §,754,791 Bl

19

claims and should not be construed in any way to limit subject
matter claimed by these claims.

I claim:

1. An entropy modifier which is operable to encode a
stream of input data bits (D1) having a first entropy for gen-
erating corresponding entropy-modified output data (D2)
having a second entropy, wherein the entropy modifier is
operable to process the stream of input data bits (D1) to
handle groups of mutually similar bits and the value of the
first bit, and one or more maximum run lengths of the groups
of mutually similar bits.

2. The entropy modifier as claimed in claim 1, wherein the
entropy modifier is operable to control one or more maximum
run lengths of the groups of mutually similar bits by using at
least one escape code.

3. The entropy modifier as claimed in claim 2, wherein the
one or more maximum run lengths of the groups of mutually
similar bits are controlled by a plurality of escape codes.

4. The entropy modifier as claimed in claim 2, wherein the
at least one escape code is implemented as a “0” value within
the entropy modifier.

5. The entropy modifier as claimed in claim 1, wherein the
entropy modifier is operable to handle the input stream of data
(D1) using the maximum run length in manner which is
dynamically varied as a function of a nature of the stream of
input data (D1).

6. The entropy modifier as claimed in claim 1, wherein the
entropy modifier (10) is operable to handle a value ofa first bit
in the stream of input data (D1) separately from a sequence of
data bits.

7. The entropy modifier as claimed in claim 6, wherein the
entropy modifier is operable to handle the value of the first bit
as separately encoded relative to the sequence of data values
that represent a continuous amount of similar bits.

8. The entropy modifier as claimed in claim 1, wherein the
entropy modifier is utilized in conjunction with one or more
coding arrangements for handling the stream of input data
bits (D1), wherein the one more coding arrangements include
one or more of: ODelta coder, RLE coding, VLC coding,
Huffman coding, Delta coding, Arithmetic coding.

9. The entropy modifier as claimed in claim 1, wherein the
entropy modifier is operable to handle the stream of input data
bits (D01) in a plurality of parts which are separately encoded
or decoded.

10. The entropy modifier as claimed in claim 9, wherein the
entropy modifier is operable to handle the plurality of parts in
a temporally parallel manner, namely by way of parallel
execution.

11. The entropy modifier as claimed in claim 9, wherein the
entropy modifier is operable to handle the plurality of parts by
using maximum run lengths which are mutually different for
one or more of the parts.

12. The entropy modifier as claimed in claim 1, wherein the
entropy modifier is implemented to function as an encoder for
compressing the stream of input data (D1) to generate the
entropy-modified output (D2, D3).

13. The entropy modifier as claimed in claim 1, wherein the
entropy modifier (10) is operable to assist to transform a bit
string present in the input data (D1) to symbols present in the
entropy modified output data (D2).

14. The entropy modifier as claimed in claim 1, wherein the
entropy modifier includes computing hardware, wherein the
computing hardware is operable to execute one or more soft-
ware products recorded on machine-readable data storage
media for processing the stream of input data (D1) to generate
the output data (D2).

25

40

45

20

15. An entropy modifier which is operable to decode a
stream of input data bits (D3 or D4) having a first entropy for
generating corresponding entropy-modified output data (D5)
having a second entropy, wherein the entropy modifier is
operable to process the stream of input data bits (D3 or D4) to
handle groups of mutually similar bits and the value of the
first bit, and one or more maximum run lengths of the groups
of mutvally similar bits.

16. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is operable to process one or more maxi-
mum run lengths of the groups of mutually similar bits by
using at least one escape code.

17. The entropy modifier as claimed in claim 16, wherein
the one or more maximum run lengths of the groups of mutu-
ally similar bits are processed by using a plurality of escape
codes.

18. The entropy modifier as claimed in claim 17, wherein
the at least one escape code is implemented as a “0” value
within the entropy modifier.

19. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is operable to handle the input stream of
data (D3 or D4) using the maximum run length in manner
which is dynamically varied as a function of a nature of the
stream of input data (D3 or D4).

20. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is operable to handle a value of a first bit
in the stream of input data (D3 or D4) separately from a
sequence of data bits.

21. The entropy modifier as claimed in claim 20, wherein
the entropy modifier is operable to handle the value of the first
bit as separately encoded relative to the sequence of data
values that represent a continuous amount of similar bits.

22. The entropy modifier as claimed in claims 15, charac-
terized in that the entropy modifier is operable to decode data
elements present in the input data (D3 or D4) and apply an
inverse entropy modification to generate the output data (DS)
as a decoded bit stream.

23. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is utilized in conjunction with one or
more coding arrangements for handling the stream of input
data bits (D3), wherein the one or more coding arrangements
include one or more of: ODelta coder, RLE coding, VLC
coding, Huffiman coding, Delta coding, Arithmetic coding.

24. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is operable to handle the stream of input
databits (D3 or D4) in a plurality of parts which are separately
encoded or decoded.

25. The entropy modifier as claimed in claim 24, wherein
the entropy modifier is operable to handle the plurality of
parts in a temporally parallel manner, namely by way of
parallel execution.

26. The entropy modifier as claimed in claim 24, wherein
the entropy modifier is operable to handle the plurality of
parts by using maximum run lengths which are mutually
different for one or more of the parts.

27. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is implemented to function as a decoder
for decompressing the stream of input data (D3 or D4) to
generate the entropy-modified output (D5).

28. The entropy modifier as claimed in claim 15, wherein
the entropy modifier is operable to assist to transform sym-
bols present in the input data (D3 or D4) to a bit string present
in the output data (D05).

29. The entropy modifier as claimed in claim 15, wherein
the entropy modifier includes computing hardware, wherein
the computing hardware is operable to execute one or more

US §,754,791 Bl

21

software products recorded on machine-readable data storage
media for processing the stream of input data (D3 or D4) to
generate the output data (DS).

30. A method of using an entropy modifier to encode a
stream of input data bits (D1) having a first entropy for gen-
erating corresponding entropy-modified output data (D2)
having a second entropy, wherein the method includes:

using the entropy modifier to process the stream of input

data bits (D1) to handle groups of mutually similar bits
and the value of the first bit, and one or more maximum
run lengths of the groups of mutually similar bits.

31. The method as claimed in claim 30, wherein the method
includes using the entropy modifier to control one or more
maximum run lengths of the groups of mutually similar bits
by using at least one escape code.

32. The method as claimed in claim 31, wherein the at least
one escape code is implemented as a “0” value within the
entropy modifier.

33. The method as claimed in claim 30, wherein the method
includes using a plurality of escape codes to control the one or
more maximum run lengths of the groups of mutually similar
bits.

34. The method as claimed in claim 30, wherein the method
includes using the entropy modifier to handle the input stream
of data (D1) using the maximum run length in manner which
is dynamically varied as a function of a nature of the stream of
input data (D1).

35. The method as claimed in claim 30, wherein the method
includes using the entropy modifier to handle a value of a first
bit in the stream of input data (D1) separately from a sequence
of data bits.

36. The method as claimed in claim 35, whetrein the method
includes using the entropy modifier to handle the value of the
first bit as separately encoded relative to the sequence of data
values that represent a continuous amount of similar bits.

37. The method as claimed in ¢laim 30, wherein the method
includes using the entropy modifier in conjunction with one
or more coding arrangements for handling the stream of input
data bits (D1), wherein the one or more coding arrangements
include one or more of: ODelta coder, RLE coding, VLC
coding, Huffman coding, Delta coding, Arithmetic coding.

38. The method as claimed in ¢laim 30, wherein the method
includes using the entropy modifier to handle the stream of
input data bits (D1) in a plurality of parts which are separately
encoded or decoded.

39. The method as claimed in claim 38, wherein the method
includes using the entropy modifier to handle the plurality of
parts in a temporally parallel manner, namely by way of
parallel execution.

40. The method as claimed in claim 38, whetrein the method
includes using the entropy modifier to handle the plurality of
parts by using maximum run lengths which are mutually
different for one or more of the parts.

41. The method as claimed in claim 30, wherein the method
includes implementing the entropy modifier to function as an
encoder for compressing the stream of input data (D1) to
generate the entropy-modified output (D2, D3).

42. The method as claimed in claim 30, wherein the method
includes using the entropy modifier to assist to transform a bit
string present in the input data (D1) to symbols present in the
entropy modified output data (D2).

43. The method as claimed in claim 30, wherein the method
includes implementing the entropy modifier to include com-
puting hardware, wherein the computing hardware is oper-
able to execute one or more software products recorded on
machine-readable data storage media for processing the
stream of input data (D1) to generate the output data (D2).

15

40

45

22

44. A computer program product comprising a non-transi-
tory computer readable storage medium having computer
readable instructions stored thereon, the computer readable
instructions being executable by a computerized device com-
prising a processor to execute the method as claimed in claim
30.

45. An method of using an entropy modifier to decode a
stream of input data bits (D3 or D4) having a first entropy for
generating corresponding entropy-modified output data (D5)
having a second entropy, wherein the method includes:

Using the entropy modifier to process the stream of input

databits (D3 or D4) to handle groups of mutually similar

bits and the value of the first bit, and one or more maxi-

mum run lengths of the groups of mutually similar bits.

46.The method as claimed in claim 45, wherein the method

includes using the entropy modifier to process one or more

maximum run lengths of the groups of mutually similar bits
by using at least one escape code.

47. The method as claimed in claim 46, wherein the method
includes processing the one or more maximum run lengths of
the groups of mutually similar bits by using a plurality of
escape codes.

48. The method as claimed in claim 47, wherein the at least
one escape code is implemented as a “0” value within the
entropy modifier.

49 . The method as claimed in claim 45, wherein the method
includes using the entropy modifier to handle the input stream
of data (D3 or D4) using the maximum run length in manner
which is dynamically varied as a function of a nature of the
stream of input data (D3 or D4).

50. The method as claimed in claim 45, wherein the method
includes using the entropy modifier to handle a value of a first
bit in the stream of input data (D3 or D4) separately from a
sequence of data bits.

51. The method as claimed in claim 50, wherein the method
includes using the entropy modifier to handle the value of the
first bit as separately encoded relative to the sequence of data
values that represent a continuous amount of similar bits.

52. A method as claimed in claim 45, characterized in that
the method includes using the entropy modifier to decode data
elements present in the input data (D3 or D4) and apply an
inverse entropy modification to generate the output data
(DO05) as a decoded bit stream.

53. The method as claimed in claim 45, wherein the method
includes using the entropy modifier in conjunction with one
or more coding arrangements for handling the stream of input
data bits (D3), wherein the one or more coding arrangements
include one or more of: ODelta coder, RLE coding, VL.C
coding, Huffman coding, Delta coding, Arithmetic coding.

54. The method as claimed in claim 45, wherein the method
includes using the entropy modifier to handle the stream of
input data bits (D3 or D4) in a plurality of parts which are
separately encoded or decoded.

55.The method as claimed in claim 54, wherein the method
includes using the entropy modifier to handle the plurality of
parts in a temporally parallel manner, namely by way of
parallel execution.

56. The method as claimed in claim 54, wherein the method
includes using the entropy modifier to handle the plurality of
parts by using maximum run lengths which are mutually
different for one or more of the parts.

57.The method as claimed in claim 45, wherein the method
includes using the entropy modifier to function as a decoder
for decompressing the stream of input data (D3 or D4) to
generate the entropy-modified output (DS5).

58.The method as claimed in claim 45, wherein the method
includes using the entropy modifier to assist to transform

US §,754,791 Bl

23

symbols present in the input data (D3 or D4) to a bit string
present in the output data (D5).

59. The method as claimed in claim 45, wherein the method
includes implementing the entropy modifier to computing
hardware, wherein the computing hardware is operable to
execute one or more software products recorded on machine-
readable data storage media for processing the stream of input
data (D3 or D4) to generate the output data (D5).

60. A computer program product comprising a non-transi-
tory computer readable storage medium having computer
readable instructions stored thereon, the computer readable
instructions being executable by a computerized device com-
prising a processor to execute the method as claimed in claim

10

15

24

	Bibliography
	Abstract
	Drawings
	Description
	Claims

