a2 United States Patent

Kalevo et al.

US009729169B2

US 9,729,169 B2
Aug. 8,2017

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND DEVICES FOR

SOURCE-CODING AND DECODING OF

DATA INVOLVING SYMBOL COMPRESSION

(71) Applicant: GURULOGIC MICROSYSTEMS
0OY, Turku (FI)

(72) Inventors: Ossi Kalevo, Akaa (FI); Tuomas
Karkkainen, Turku (FI); Artur
Huhtaniemi, Turku (FI)

(73) GURULOGIC MICROSYSTEMS OY

FD

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Notice:

1) 15/119,365

(22)

Appl. No.:

PCT Filed: Feb. 20, 2015

(86) PCT No.:

§ 371 (e)(D),
(2) Date:

PCT/EP2015/025008

Aug. 16, 2016

(87) PCT Pub. No.: W0O2015/124324

PCT Pub. Date: Aug. 27, 2015

(65) Prior Publication Data

US 2017/0063392 Al Mar. 2, 2017

(30) Foreign Application Priority Data

Feb. 20, 2014 (GB) woovvvoeceeeeeeeeeeeeeeeens 1403039.9

(51) Int.CL
HO3M 7/40
HO3M 7/30

(2006.01)

(2006.01)
(Continued)
(52) US. CL
HO3M 7/6058 (2013.01); HO3M 7/40
(2013.01); HO3M 7/4006 (2013.01); HO3M
7/42 (2013.01);

(Continued)

Method
10

.

Input data

(58) Field of Classification Search
CPC .. HO3M 7/6058; HO3M 19/91; HO3M 7/4006;
HO4N 19/436; HO4N 19/625

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS
5,838,266 A 11/1998 Houle et al.

2011/0249754 A1 10/2011 Karczewicz et al.

(Continued)

OTHER PUBLICATIONS

International Search Report issued in International Patent Applica-
tion No. PCT/EP2015/025008 with Date of mailing Jun. 8, 2015.
Written Opinion of the International Searching Authority issued in
International Patent Application No. PCT/EP2015/025008 with
Date of mailing Jun. 8, 2015.

(Continued)

Primary Examiner — Peguy Jean Pierre
(74) Attorney, Agent, or Firm — Eric L. Sophir; Dentons
US LLP

(57) ABSTRACT

A method of encoding input data in an encoder to generate
corresponding encoded data includes splitting and/or trans-
forming the input data into data chunks, analyzing symbols
present in the input data and compressing the symbols as a
function of occurrence of the symbols in the data chunks;
generating code tables, frequency tables, and/or length of
code word tables for the symbols present in the data chunks;
computing sets of indices relating the symbols in each data
chunk and/or the compressed symbols to entries in the code
tables, the frequency tables, and/or the length of code word
tables; and assembling the sets of indices, together with the
frequency tables, the code tables, and/or information indica-
tive of such tables, for generating the encoded data. An
encoder that utilizes the method, together with a correspond-
ing decoder, wherein the encoder and the decoder in com-
bination form a codec.

75 Claims, 4 Drawing Sheets

Splitting andror
transforming input data D1
to one or more data chunks

Encoder 50

Generating -
frequency —1 20 ,¢
table(s) o

Frequency table(s)

", &

Generating
coding ——|
table(s)

Cade table(s)
35

Analyzing the
input data D1_|
o select
encoding
approach

Computing indices
relating the symbols
to entries of table(s)

Encoded data:

Assembling information of indices

and table(s) to the encoded data E2
Encoded data |and compressing symbols within
E2 table(s) to the encoded data E2

Data chunk1

Data chunkz

Frequency table

Code table

Information | Freqile
ofindices | fOrint
Symb

icies| information | COd8E
doned | i frequency table FHCEON o indened |
ols. symbols |

4 with cods lable.

US 9,729,169 B2

Page 2

(51) Imt. Cl

HO04N 19/91 (2014.01)

HO04N 19/625 (2014.01)

HO3M 7/42 (2006.01)

HO04N 19/436 (2014.01)

HO4N 19/44 (2014.01)
(52) US. CL

CPC HO4N 19/436 (2014.11); HO4N 19/44

(2014.11); HO4N 19/625 (2014.11); HO4N
19191 (2014.11)
(58) Field of Classification Search
USPC oo 341/106, 50, 51, 107, 67, 65
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0199300 Al 8/2012 Edwards et al.

2014/0085115 Al* 3/2014 Beier HO3M 7/30
341/106

2014/0241425 Al 8/2014 Sasai et al.

OTHER PUBLICATIONS
Gurulogic Microsystems Oy, “Encoder Decoder and Method,” filed
on Feb. 20, 2014 with Application No. GB1403038.1.
Notification of Transmittal of the International Preliminary Report
on Patentability issued in International Patent Application No.
PCT/EP2015/025008 with Date of mailing May 10, 2016.

* cited by examiner

U.S. Patent

PRIOR ART

Aug. 8,2017

Input data
D1

Transformation(s)

\ 2

Vv
Encoded data

E2 (C)

Inverse
transformation(s)

T-1

ANp4

vV
Decoded data

D3

Sheet 1 of 4

US 9,729,169 B2

Encoded data:

‘Coding table

Symbols coded
with coding table

FIG. 1

U.S. Patent

Method
10

Aug. 8, 2017

Sheet 2 of 4 US 9,729,169 B2

Input data

D1

Splitting and/or
transforming input data D1

to one or more data chunks

Generating

Encoder 50

frequency
table(s)

Generating

coding

Frequency table(s) I

25

table(s)

Code table(s)
35

Analyzing the

input data D1

to select

encoding

approach

Computing indices
relating the symbols

to entries of table(s)

Encoded data:

\Assembling information of indices
-z

NV

and table(s) to the encoded data E2

Encoded data and compressing symbols within

E2

table(s) to the encoded data E2

Data chunk1 Data chunk2
Frequency table Svimbol dod Code table Svmbol ded
- : ymbols code - ymbols code
Information Frequencies iy, frequency table | Information Codes with code table
ofindices | for indexed of indices | for indexed amm
symbols symbols

FIG. 2

U.S. Patent Aug. 8,2017 Sheet 3 of 4 US 9,729,169 B2

Input data
D1

Encoder

50

Encoded data
E2

Decoder

[
|
[
|
|
! 1 - Codec
[
[
[
|
[
[

[Dec\gded data
D3

FIG. 3A

U.S. Patent Aug. 8,2017 Sheet 4 of 4 US 9,729,169 B2

Input data
D1

I
v Encoder '
50 |
I
100 - Codec EnCOECizt%d data
Decoder &
60

|

|

|

|

v |
Decoded data :
\ D3 |
|

|

|

I

I

I

¥ Transcoder

70

ﬁranscoded data
D4

US 9,729,169 B2

1
METHODS AND DEVICES FOR
SOURCE-CODING AND DECODING OF
DATA INVOLVING SYMBOL COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of PCT/EP2015/
025008, filed Feb. 20, 2015, which claims priority under 35
U.S.C. §119 to GB Application No. 1403039.9, filed Feb.
20, 2014, all of which are incorporated herein by reference
in their entirety.

TECHNICAL FIELD

The present disclosure relates to methods of encoding
input data to generate corresponding encoded data. More-
over, the present disclosure also relates to methods of
decoding aforesaid encoded data to generate corresponding
decoded output data. Furthermore, the present disclosure
also relates to encoders and decoders which are operable to
implement aforesaid methods. Additionally, the present dis-
closure relates to computer program products comprising a
non-transitory computer-readable storage medium having
computer-readable instructions stored thereon, the com-
puter-readable instructions being executable by a comput-
erized device comprising processing hardware for executing
aforementioned methods.

BACKGROUND

In overview, as illustrated in FIG. 1, known encoding
methods of encoding input data D1 to generate correspond-
ing encoded output data E2 involve applying one or more
transformations T to the input data D1 to generate corre-
sponding transformed encoded output data E2, wherein the
transformed encoded output data E2 has associated there-
with coding table data C information which is indicative of
one or more coding tables defining the one or more trans-
formations T employed. The encoded transformed data E2
and the coding table data C information, namely collectively
the encoded output data E2, are often communicated via a
data carrier and/or via a data communication network to one
or more decoders which are operable to apply one or more
inverse transformations T~' to decode the encoded output
data E2 to generate corresponding decoded data D3. It is
often desirable that the encoded output data E2 is com-
pressed relative to the input data D1, for example to reduce
communication network capacity load when communicating
the encoded output data E2. Moreover, it is also desirable
that the encoded output data E2 is compressed in a substan-
tially lossless manner, so that the decoded data D3 is an
accurate reproduction of information included in the input
data D1. Data compression achievable in the encoded output
data E2 relative to the input data D1 is potentially inefficient
when the coding table data C information is significant in
size relative to the encoded transformed data E2, namely the
coding table data C information corresponds to a significant
data overhead in the transformed encoded data E2.

There are several known methods of encoding the input
data D1 to generate the encoded output data E2. For
example, known Huffman encoding or other VL.C encoding
methods are often employed to compress various types of
data. Moreover, Arithmetic coding, or Range coding, are
becoming increasingly popular for compressing input data,
but are quite inefficient in situations where:

20

25

30

35

40

45

50

55

60

65

2

(i) a frequency table for the input data D1 is not already
known by an encoder which is operable to encode the input
data D1 to generate corresponding encoded output data E2,
and by a decoder which is operable to decode the encoded
output data E2; and

(ii) the amount of input data is relatively small, for
example in a situation where the input data D1 is being
communicated in small data segments or data chunks,
wherein each data segment or data chunk is accompanied by
a corresponding frequency table.

As aforesaid, such inefficiency arises due to delivery of
one or more frequency tables consuming considerable data
space, if it cannot be selected using relatively few identifi-
cation parameters from a list of possible frequency tables,
for example which the decoder has stored locally thereat.
Moreover, it is also less probable to find suitable frequency
tables than suitable code tables from such a list. Often, the
input data D1 to be encoded can also vary locally, for
example it is transformed during transmission through a
communication network to conform to spatially local data
standards for the communication network.

There are known methods available for delivering code
tables or frequency tables in association with communicat-
ing encoded data content derived from symbols. Most of the
known methods employ a direct delivery of a Huffman tree
or frequencies of the symbols. Such known methods are not
so satisfactory, because they require considerable informa-
tion to be delivered from an encoder to a corresponding
decoder. Moreover, there are also known methods of deliv-
ering lengths of code table symbols, for example as
employed in a known Intel IPP-library, which has been
contemporarily deprecated; there is employed a method of
compressing a code table, namely by way of “HuffL.enCo-
deTablePacK”, and decoding it back again, namely by way
of “HuffLenCodeTableUnpack™; however, this method is
not satisfactory and sometimes even increases the size of
data during encoding processes. Moreover, the method also
requires that there are 256 symbols, and all the symbols from
0 to 255 have a non-zero length for their code words.
Methods that deliver code tables are still clearly amongst
most efficient delivery mechanisms that are currently avail-
able for prefix codes that are generated, for example by
Huffman encoding techniques. When a Huffman tree is
delivered from an encoder to a corresponding decoder,
generated code symbols from the encoder are always similar
in the encoder and in the decoder. When only a frequency
table is delivered, there then has to be similar algorithms
used in an encoder and in a decoder for actual Huffman tree
generation from the frequency table to be achieved, if the
Huffman tree is needed, to enable decoding of the symbols
in a proper manner at the decoder. If the lengths of code table
symbols are delivered, then similar methods from lengths of
symbol-to-frequency-table transformation are also needed in
the encoder and in the decoder to enable decoding of the
symbols in a proper manner. Communicating lengths of
symbols from the encoder to the decoder is not a practical
method of delivering frequencies for Arithmetic coding and
Range coding, because they are designed to support more
accurate frequency tables than merely enabled by commu-
nicating the lengths of code symbols. Lengths of code
symbols can also be used in Arithmetic coding and Range
coding. However, these methods do not offer benefits com-
pared to Huffman Coding for example, if no adaptive update
of tables is executed later for future data. Delivery of
information which is indicative of probabilities offers usu-
ally more optimal coding results with Range coding or
Arithmetic coding in contradistinction to Huffman coding.

US 9,729,169 B2

3

The probabilities of the symbols can be calculated by
dividing frequencies of occurrence of the symbols by a sum
of'the symbol frequencies of occurrence, namely=number of
symbols. A delivery of such probabilities is beneficially
made by using scaled probability values. Scaled probability
values can be calculated by multiplying original symbol
probability values with an integer number that is advanta-
geously a power of two value, namely 2” wherein n is an
integer, and by then rounding it to a nearest integer value.
The sum of these scaled probabilities as integer numbers is
equalized to be the same as the multiplier value. An escape
code symbol is also beneficially created for symbols that
otherwise are not allocated their own non-zero scaled prob-
ability value. This means that those symbols that need an
escape code have a probability that is smaller than what can
be presented with the selected multiplier value. It is also
possible to create scaled probabilities without employing an
escape code with two different mechanisms. The multiplier
value can be increased and then the new probability values
can be calculated. It is also possible to upgrade those scaled
probability values for available symbols that are equal to
zero to be equal to one. This probability value upgrade
requires that the increase of the probability values are
compensated by decreasing the probability values of the
other symbols. This is done so as to make the sum of
probabilities exactly the same as the multiplier value. This
procedure makes the probability values not as well opti-
mized as could be possible, but escape symbols are not
needed, and in some cases it might be still the optimal
coding solution. Lengths of symbols or probability values
define rough estimate of frequency table that can be used for
methods that employ variable length coding symbols, for
example Huffman coding, Range coding, Arithmetic coding
and any other variable length coding methods. It will be
appreciated that the scaled probability table can directly be
used as the rough estimate of symbol frequencies when they
are needed, and lengths of symbols need to be first converted
to the rough estimate of symbol frequencies before the
utilization. The conversion from length of symbols to fre-
quency table will be shown later during the data encoding
and table delivery.

Many known practical methods of encoding data do not
utilize optimized code tables at all, namely they utilize fixed
code tables for encoding data to generate corresponding
encoded data, and fixed code tables for subsequently decod-
ing the encoded data. Sometimes tables are updated with
adaptive methods based on the delivered symbols. In certain
known methods, there are sometimes utilized a couple of
different code tables, alternatively frequency tables, for
encoding data in an encoder and correspondingly decoding
the encoded data in a decoder, wherein an index defining a
selected code table, probability table, or frequency table, is
delivered as information from the encoder to the decoder. In
certain methods, there are employed separate tables for
luminance and color channels, for inter- and intra-blocks, or
for different kinds of data; however, the separate tables are
communicated in an inefficient manner; for example, refer-
ence is herewith made to a following Internet web-site
(Wikipedia): http://en.wikipedia.org/wiki/Huffman_coding.
During decompression, using Huffman-based methods, a
Huffman tree must be reconstructed. In a simplest case,
where character frequencies are relatively predictable, the
tree is susceptible to being reconstructed, and even statisti-
cally adjusted on each compression cycle, and thus reused
every time, at an expense of at least some measure of
compression efficiency; alternatively, Huffman-tree infor-
mation must be sent a priori, namely, beforehand.

20

25

30

35

40

45

50

55

60

65

4

A simple approach of prepending frequency counts relat-
ing to symbols that are coded into an output stream of
compressed data has a major disadvantage of increasing a
data volume in the compressed data by at least several
kiloBytes (kB) in practice, so such a simple approach has
little practical use. If the data is compressed using canonical
encoding, the compression model can be precisely recon-
structed with just B2% bits of information, wherein B is the
number of bits per symbol, for example, with 8 bits it
requires 2 kB.

Another method is simply to prepend the Huffman tree,
bit by bit, to the compressed output stream. For example,
assuming that the value of O represents a parent node and 1
a leaf node, whenever the latter is encountered, a tree-
building routine simply reads a next 8 bits to determine a
character value of that particular leaf. Such a process con-
tinues recursively until a last leaf node is reached; at that
point, the Huffman tree will thus be faithfully reconstructed,
for example at a decoder. A data overhead arising from using
such a method ranges from roughly 2 to 320 bytes, assuming
an 8-bit alphabet.

In order to elucidate further known methods of encoding
data and corresponding methods of decoding encoded data,
Huffman decoding will next be described in overview. It will
be appreciated that any other methods, for example Range
decoding or Arithmetic decoding, can also be utilized
instead of Huffman decoding. Before commencing compres-
sion of a data file, a compressor, in an encoder, has to
determine codes to be employed when executing the com-
pression.

When Huffman decoding is employed, before starting
compression of a given data file including symbols to
generate corresponding encoded output data, an encoder has
to determine codes that are to be used to represent the given
data. Conveniently, the codes are based on probabilities,
namely frequencies of occurrence, of the symbols in the
given data file. However, the frequencies, probabilities, or
lengths of symbols have to be recorded, for example as side
information, namely as supplementary information, in the
encoded output data, so that any Huffman decoder will be
able to decode the encoded output data to generate corre-
sponding decoded data. Conveniently, the frequencies of
occurrence or lengths of symbols are integers, or probabili-
ties which can be expressed as scales integers; such integers
included in the supplementary information add often merely
a few hundred bytes to the encoded output data. Optionally,
it is also possible to write variable length codes themselves
to the encoded output data, but this may in certain circum-
stances be awkward, because the codes may have mutually
different sizes. Alternatively, it is feasible to write the
Huffman tree to the encoded output data, but this requires
more data to be communicated than merely communicating
frequencies of occurrence of the symbols in the given data.

During operation, the decoder must be provided with
information regarding what is at a start of an encoded
compressed file received at the decoder for being decoded.
From data extracted from the encoded compressed file, for
example from a start thereof, the decoder is operable to
construct an alphabet of a Huffman tree. After the Huffman
tree has been constructed in the decoder, the decoder is then
able to decode a remainder of the file, using the Huffman tree
as a decoding tool. The decoder employs a relatively simple
decoding algorithm which includes following steps:

(a) start at a root of the Huffman tree, and then read a first
bit of the encoded output data to be decoded using the
Huffman tree;

US 9,729,169 B2

5

(b) if the first bit is a “1”, then follow a top edge of the
Huffman tree; if the first bit is a “0”, then follow a bottom
edge of the Huffman tree;

(c) read a second bit of the encoded output data, and then
employ the second bit in a manner akin to the step (b)
towards “leaves” of the Huffmann tree, and so on until a
“leaf” of the Huffman tree is eventually reached, whereat an
original uncompressed symbol is to be found, often an
associated ASCII code; that code is then output from the
decoder; and

(d) steps (b) and (c) are repeated until the encoded output
data has been decoded.

Known contemporary Huffman encoding is beneficial to
employ when an encoded string is large in size relative to a
code table employed to generate the string. Moreover, such
contemporary Huffman coding is beneficial to employ when
a code table is defined a priori for both an encoder and a
corresponding decoder. There is thus a need for alternative
encoding methods which address aforementioned limita-
tions associated with known approaches to encoding and
decoding data, for example aforesaid Huffman encoding and
decoding methods.

SUMMARY

The present invention seeks to provide an improved
method of encoding data (D1) to generate corresponding
encoded data (E2).

The present invention also seeks to provide an improved
encoder which is operable to employ the aforesaid improved
method of encoding data.

The present invention seeks to provide an improved
method of decoding encoded data (E2) to generate corre-
sponding decoded data (D3).

The present invention seeks to provide an improved
decoder for decoding aforesaid encoded data (E2) to gen-
erate corresponding decoded data (D3).

According to a first aspect, there is provided a method of
encoding input data (D1) in an encoder to generate corre-
sponding encoded data (E2), characterized in that the
method includes:

(a) analyzing symbols present in the input data (D1) and
splitting and/or transforming the input data (D1) into one or
more data chunks;

(b) generating as a function of occurrence of the symbols
at least one of: one or more code tables, one or more
frequency tables, one or more length of code word tables,
one or more probability tables for the symbols present in the
one or more data chunks;

(c) computing one or more sets of indices relating the
symbols in each data chunk to entries in at least one of: the
one or more code tables, the one or more frequency tables,
the one or more length of code word tables, the one or more
probability tables;

(d) assembling information of the one or more sets of
indices relating the symbols in each data chunk, together
with at least one of: the one or more frequency tables, the
one or more code tables, the one or more length of code
word tables, the one or more probability tables, information
indicative of the one or more tables, to the encoded data
(E2); and

(e) compressing the symbols within the one or more tables
to the encoded data (E2).

The present invention is of advantage in that the method
involves splitting, namely dividing, the input data (D1) into
one or more data chunks, and/or compressing symbols in the
input data (D1), so that the input data (D1) can be efficiently

20

25

30

35

40

45

50

55

60

65

6

encoded, for example in a manner which is best suited for
each data chunk or compressed symbol, using indices (“in-
dexes”) and associated one or more tables referenced by the
indices.

Optionally, in the method, at least one of the one or more
tables is pre-defined.

Optionally, the method includes delivering the encoded
data (E2) containing the information of the one or more sets
of indices relating the symbols in each data chunk, together
with at least one of: the one or more frequency tables, the
one or more code tables, the one or more length of code
word tables, the one or more probability tables, the infor-
mation indicative of the one or more tables as well as the
compressed symbols.

Optionally, the method includes generating the one or
more tables for being regenerated during decoding based
upon their symmetry and corresponding symmetry-indica-
tive information.

Optionally, the method includes delivering at least one of
the one or more tables in a manner in which the at least one
of the one or more tables is storable for subsequent reuse.

Optionally, in the method, the information of the one or
more sets of indices includes:

indices of the symbols that occur in the chunk as such, and
of which probability values are to be inserted into the
encoded data (E2), preceded by a total count of indices in the
data chunk; or

(i) bits expressing which symbols out of all possible
symbol values occur in the chunk and for which symbols
probability values are to be inserted into the encoded data
(E2); or

(iii) information stating that starting from the beginning,
all symbol value probabilities to be inserted into the encoded
data (E2), which in itself also expresses the count of indices.

The aforesaid splitting, namely dividing, optionally
includes subdividing of the input data (D1).

Optionally, in (a), splitting is usually done, but sometimes
it is also necessary to compress the available data chunk with
the optimal code table without splitting the data into new
data chunks. Moreover, sometimes, the original data is not
split, but instead, new data are created, for example by one
or more transformations to one or more data chunks that
need to be compressed most efficiently. Encoders imple-
mented pursuant to the present disclosure can be used to
create different data chunks. Thus, it will be appreciated that
this method is especially well suitable for video codecs and
audio codecs that are operable to code data with chunks that
are from different time slots. Different frames or sections are
different data chunks and they can still be split to one or
more chunks by using encoders implementing one or more
methods pursuant to the present disclosure. All these data
chunks can reuse any table that is delivered earlier, for
example in the same or in the previous frames.

Embodiments of the present invention enable efficient
delivery of code tables or frequency tables. This reduces a
data communication and/or data storage overhead needed
for table delivery and/or storage. It also enables smaller data
chunks to be coded by utilizing coding tables which are
better optimized for each individual data chunk. Thereby,
increased greater compression efficiency can be achieved,
which means that the data storage capacity, the transmission
bandwidth and the energy consumption can be reduced.

Frequencies of various parts of data are often mutually
different, and often their relative data entropy is also mutu-
ally different, and for such reasons it is beneficial to split the
data into multiple portions, namely data chunks. Benefi-
cially, different code tables are used for the portions, depend-

US 9,729,169 B2

7

ing upon a nature of data and/or type of data and/or content
of data of the portions; by “nature” is meant one or more
characteristics and/or parameters of the data. The present
invention provides methods which enable a given large data
file to be split more efficiently to smaller portions, namely
data chunks, with an associated benefit that the delivery of
the code table or frequency table can be optimized for such
data chunks. This split of the big data file enables substantial
benefits in respect of modifying entropy of data involved,
and so it is capable of highly reducing an amount of encoded
data to be communicated. The data values in one or more
data chunks can also be split, as aforementioned. This
splitting, namely dividing, of data value can be imple-
mented, for example, by mutually separating the MSB (most
significant bits) and LSB (least significant bits). The data
values are also optionally split to more than two separate
data value chunks.

Optionally, the method includes applying one or more
data compression algorithms in step (d) to generate the
encoded data (E2). More optionally, in the method, the one
or more data compression algorithms include at least one of:
Huffman encoding, VLC, entropy encoding, Arithmetic
encoding, Range encoding, but are not limited thereto.

Optionally, the method includes splitting the input data
(D1) into a plurality of data chunks and employing a parallel
architecture of processors for processing the plurality of data
chunks in a substantially concurrent manner.

Optionally, the method includes generating the one or
more sets of indices based on multiple data values that are
combined together. More optionally, in the method, indices
(namely “indexes”) are derived from one or more RGB-
pixels or YUV-pixels, that contain R, G and B pixel values
or Y, U and V pixel values.

More optionally, the method includes dynamically
switching between assembling the data chunks either unen-
coded or encoded into the encoded data (E2), as a function
of an achievable data compression ratio for the data chunks
when included in the encoded data (E2).

Optionally, the method includes incorporating into the
encoded data (E2) at least one trailing bit to indicate if a
symbol pertains to “change of code table” or to “end of
data”.

Optionally, the method includes generating for a given
data chunk substantially only enough indices required for
referencing to one or more symbols present in the given data
chunk.

Optionally, delivered code tables are also compressed, for
example by employing Huffman coding, and such code table
compression method is also optionally provided with its own
associated one or more code tables. More optionally, in the
method, the compression of the one or more code tables
employs one or more subsidiary code tables.

Optionally, the method includes communicating the one
or more code tables in a manner which enables the one or
more code tables to be employed in a decoder for decoding
subsequently sent data.

Optionally, the method includes a step of including in the
encoded data (E2) one or more identification codes indicat-
ing from where the one or more code table are susceptible
to being accessed, via one or more databases, and/or one or
more proxy databases.

Optionally, the method is arranged to encode one or more
of following types of data: captured audio signals, captured
video signals, captured images, text data, seismographic
data, sensor signals, analog-to-digital (ADC) converted data,
biomedical signal data, calendar data, economic data, math-
ematical data, binary data.

5

20

25

30

35

40

45

50

55

60

65

8

According to a second aspect, there is provided an
encoder for encoding input data (D1) to generate corre-
sponding encoded data (E2), characterized in that the
encoder includes:

(a) an analyzer for analyzing symbols present in the input
data (D1), and for splitting and/or transforming the input
data (D1) into one or more data chunks;

(b) a generator for generating, as a function of occurrence
of the symbols at least one of: one or more code tables, one
or more frequency tables, one or more length of code word
tables, one or more probability tables for the symbols
present in the one or more data chunks;

(c) a computing engine for computing one or more sets of
indices (namely “indexes”) relating the symbols in each data
chunk to entries in at least one of: the one or more code
tables, the one or more frequency tables, the one or more
length of code word tables, the one or more probability
tables;

(d) a data assembler for assembling information of the one
or more sets of indices relating the symbols in each data
chunk, together with at least one of: the one or more
frequency tables, the one or more code tables, the one or
more length of code word tables, the one or more probability
tables, information indicative of the one or more tables, to
the encoded data (E2); and

(e) a compressor for compressing the symbols within the
one or more tables to the encoded data (E2).

Such splitting, namely dividing, optionally includes sub-
dividing of the input data (D1).

Optionally, in (a), splitting is usually done, but sometimes
it is also necessary to compress the available data chunk with
the optimal code table without splitting the data to new data
chunks. Moreover, sometimes, the original data is not split,
but instead, new data are created, for example by one or
more transformations to one or more data chunks that need
to be compressed most efficiently. Encoders implemented
pursuant to the present disclosure can be used to create
different data chunks. Thus, it will be appreciated that this
method is especially well suitable for video codecs and
audio codecs that codes the data with chunks that are from
different time slots. Different frames or sections are different
data chunks and they can still be split to one or more chunks
by using encoders implementing method pursuant to the
present disclosure. All these data chunks can reuse any table
that is delivered earlier, for example in the same or in the
previous frames.

Optionally, the encoder is operable to deliver the encoded
data (E2) containing the information of the one or more sets
of indices relating the symbols in each data chunk, together
with at least one of: the one or more frequency tables, the
one or more code tables, the one or more length of code
word tables, the one or more probability tables, the infor-
mation indicative of the one or more tables as well as the
compressed symbols.

Optionally, the encoder is operable to deliver at least one
of the one or more tables in a manner in which the at least
one of the one or more tables is storable for subsequent
reuse.

Optionally, the encoder is operable to apply one or more
data compression algorithms in the data assembler to gen-
erate the encoded data (E2). More optionally, in the encoder,
the one or more data compression algorithms include at least
one of: Huffman encoding, VLC, entropy encoding, Arith-
metic encoding, Range encoding.

Optionally, the encoder is operable to split the input data
(D1) into a plurality of data chunks and to employ a parallel

US 9,729,169 B2

9

architecture of processors for processing the plurality of data
chunks in a substantially concurrent manner.

Optionally, in the encoder, the generator is operable to
generate the one or more sets of indices based on multiple
data values that are combined together. More optionally, in
the encoder, indices are derived from one or more RGB-
pixels or YUV-pixels that contain R, G and B pixel values
orY, U, and V pixel values. More optionally, the encoder is
operable to switch dynamically between assembling the data
chunks either unencoded or encoded into the encoded data
(E2), as a function of an achievable data compression ratio
(achievable) for the data chunks when included in the
encoded data (E2).

Optionally, the encoder is operable to incorporate into the
encoded data (E2) at least one trailing bit to indicate if a
symbol pertains to “change of code table” or to “end of
data”.

Optionally, in the encoder, the generator is operable to
generate for a given data chunk substantially only enough
indices required for referencing to one or more symbols
present in the given data chunk.

Optionally, delivered code tables are compressed, for
example by employing Huffman coding, and this compres-
sion method optionally sometimes needs its own one or
more associated code tables.

Optionally, delivered code tables can be reused in the
same data frame or in the next data frames, namely the data
chunk encoding can reuse any table that is delivered before
it for the other data chunk in this data frame or in the
previous data frames.

Optionally, optimal implementations for delivering the
table are beneficially employed when implementing the
encoder, for example in encoded data, or by including in the
encoded data one or more identification codes indicating
from where the table can be accessed, for example from one
or more databases, one or more proxy databases and similar.

Optionally, to provide for more efficient encoding of data,
delivery of encoded data and decoding of encoded data, it is
beneficial that delivered and/or referenced tables, as afore-
mentioned, are stored, for example to be used later, for
example when the index of the stored table has been
delivered. Such an approach is capable of reducing a volume
of data that, for example needs to be communicated from an
encoder to a corresponding decoder, pursuant to the present
disclosure.

According to a third aspect, there is provided a computer
program product comprising a non-transitory computer-
readable storage medium having computer-readable instruc-
tions stored thereon, the computer-readable instructions
being executable by a computerized device comprising
processing hardware to execute the method pursuant to the
first aspect.

According to a fourth aspect, there is provided a method
of decoding encoded data (E2) generated by the encoder
pursuant to the second aspect; there is provided a method in
a decoder of decoding encoded data (E2) generated by the
encoder, for generating corresponding decoded data (D3),
characterized in that the method includes:

receiving the encoded data (E2) and extracting therefrom
information of one or more sets of indices, together with at
least one of: one or more frequency tables, one or more code
tables, one or more length of code word tables, one or more
probability tables, information indicative of the one or more
tables;

(ii) computing from the one or more sets of indices
corresponding symbols in at least one of: one or more data
chunks, compressed symbols of entries in the one or more

20

25

30

35

40

45

50

55

60

65

10

code tables, the one or more frequency tables, the one or
more length of code word tables, the one or more probability
tables;

(iii) regenerating from the symbols one or more data
chunks, using information from at least one of: the one or
more code tables, the one or more frequency tables, the one
or more length of code word tables, the one or more
probability tables; and

(iv) combining and/or transforming the one or more data
chunks to generate the decoded data (D3).

Optionally, in the method, at least one of the one or more
tables is pre-defined.

Optionally, the method includes transcoding the decoded
data (D3) to generate corresponding transcoded data (D4)
and/or generating the corresponding transcoded data (D4)
from the encoded data (E2).

Optionally, the method includes regenerating the one or
more tables based upon their symmetry and corresponding
symmetry-indicative information.

Optionally, the method includes receiving at least one of
the one or more tables in a manner in which the at least one
of the one or more tables is storable for subsequent reuse.

Optionally, the method includes applying one or more
data decompression algorithms in step (iv) to generate the
decoded data (D3). More optionally, in the method, the one
or more data decompression algorithms include at least one
of: Huffman decoding, VLC decoding, entropy decoding,
Arithmetic decoding, Range decoding.

Optionally, the method includes combining a plurality of
the one or more data chunks to generate the decoded data
(D3) by employing a parallel architecture of processors for
processing the plurality of data chunks in a substantially
concurrent manner.

Optionally, the method includes generating the one or
more sets of indices based on multiple data values that are
combined together. More optionally, in the method, the
indices are derived from one or more RGB-pixels or YUV-
pixels that contain R, G and B pixel values or Y, U and V
pixel values. More optionally, the method includes switch-
ing dynamically between generating the one or more data
chunks either unencoded or encoded into the encoded data
(E2), as a function of an achievable data decompression ratio
for the data chunks when included in the encoded data (E2).

Optionally, in the method, the decoder is operable to
extract from the encoded data (E2) at least one trailing bit
which is indicative of if a symbol pertains to “change of
code table” or to “end of data”.

Optionally, the method includes generating a given data
chunk substantially from only enough indices required for
referencing to one or more symbols present in the given data
chunk.

Optionally, the method includes decompressing the one or
more code tables included in the encoded data (E2). More
optionally, the method includes decompressing the one or
more code tables by employing Huffman decoding. More
optionally, in the method, decompression of the one or more
code tables employs one or more subsidiary code tables.

Optionally, the method includes receiving the one or more
code tables in a manner which enables the one or more code
tables to be employed in the decoder for decoding subse-
quently sent data.

Optionally, the method includes extracting from the
encoded data (E2) one or more identification codes indicat-
ing from where the one or more code table are susceptible
to being accessed, via one or more databases, and/or one or
more proxy databases.

US 9,729,169 B2

11

Optionally, the method includes decoding one or more of
following types of data: captured audio signals, captured
video signals, captured images, text data, seismographic
data, sensor signals, analog-to-digital (ADC) converted data,
biomedical signal data, calendar data, economic data, math-
ematical data, binary data.

Optionally, the method includes receiving the encoded
data (E2) from a plurality of data sources, and to combine
data provided from the sources to regenerate the encoded
data (E2).

According to a fifth aspect, there is provided a computer
program product comprising a non-transitory computer-
readable storage medium having computer-readable instruc-
tions stored thereon, the computer-readable instructions
being executable by a computerized device comprising
processing hardware to execute the method pursuant to the
fourth aspect.

According to a sixth aspect, there is provided a decoder
for decoding encoded data (E2) generated by the encoder
pursuant to the second aspect; there is provided a decoder for
decoding encoded data (E2) generated by the encoder for
generating corresponding decoded data (D3), characterized
in that the decoder is operable:

to receive the encoded data (E2) and to extract therefrom
information of one or more sets of indices, together with at
least one of: one or more frequency tables, one or more code
tables, one or more length of code word tables, one or more
probability tables, information indicative of the one or more
tables;

(ii) to compute from the one or more sets of indices
corresponding symbols in at least one of: one or more data
chunks, compressed symbols of entries in the one or more
code tables, the one or more frequency tables, the one or
more length of code word tables, the one or more probability
tables;

(iii) to regenerate from the symbols one or more data
chunks, using information from at least one of: the one or
more code tables, the one or more frequency tables, the one
or more length of code word tables, the one or more
probability tables; and

(iv) to combine and/or transform the one or more data
chunks to generate the decoded data (D3).

Optionally, the decoder further includes a transcoder for
transcoding the decoded data (D3) to generate correspond-
ing transcoded data (D4) and/or generating the correspond-
ing transcoded data (D4) from the encoded data (E2).

Optionally, the decoder is operable to regenerate the one
or more tables based upon their symmetry and correspond-
ing symmetry-indicative information provided to the
decoder.

Optionally, the decoder is operable to receive at least one
of the one or more tables in a manner in which the at least
one of the one or more tables is storable for subsequent
reuse.

Optionally, the decoder is operable to apply one or more
data decompression algorithms in (iv) to generate the
decoded data (D3). More optionally, in the decoder, the one
or more data decompression algorithms include at least one
of: Huffman decoding, VLC decoding, entropy decoding,
Arithmetic decoding, Range decoding.

Optionally, the decoder is operable to combine a plurality
of the one or more data chunks to generate the decoded data
(D3) by employing a parallel architecture of processors for
processing the plurality of data chunks in a substantially
concurrent manner.

Optionally, the decoder is operable to generate the one or
more sets of indices based on multiple data values that are

20

25

30

35

40

45

50

55

60

65

12

combined together. More optionally, in the decoder, the
indices are derived from one or more RGB-pixels or YUV-
pixels that contain R, G and B pixel values or Y, U and V
pixel values. More optionally, the decoder is operable to
switch dynamically between generating the one or more data
chunks either unencoded or encoded into the encoded data
(E2), as a function of an achievable data decompression ratio
for the data chunks when included in the encoded data (E2).

Optionally, the decoder is operable to extract from the
encoded data (E2) at least one trailing bit which is indicative
of if a symbol pertains to “change of code table” or to “end
of data”.

Optionally, the decoder is operable to generate a given
data chunk substantially from only enough indices required
for referencing to one or more symbols present in the given
data chunk.

Optionally, the decoder is operable to decompress the one
or more code tables included in the encoded data (E2). More
optionally, the decoder is operable to decompress the one or
more code tables by employing Huffman decoding. More
optionally, in the decoder, decompression of the one or more
code tables employs one or more subsidiary code tables.

Optionally, the decoder is operable to receive the one or
more code tables in a manner which enables the one or more
code tables to be employed in the decoder (60) for decoding
subsequently sent data.

Optionally, the decoder is operable to extract from the
encoded data (E2) one or more identification codes indicat-
ing from where the one or more code table are susceptible
to being accessed, via one or more databases, and/or one or
more proxy databases.

Optionally, the decoder is operable to decode one or more
of following types of data: captured audio signals, captured
video signals, captured images, text data, seismographic
data, sensor signals, analog-to-digital (ADC) converted data,
biomedical signal data, calendar data, economic data, math-
ematical data, binary data.

Optionally, the decoder is operable to receive the encoded
data (E2) from a plurality of data sources, and to combine
data provided from the sources to regenerate the encoded
data (E2).

According to a seventh aspect, there is provided a codec
which includes at least one encoder pursuant to the second
aspect for encoding input data (D1) to generate correspond-
ing encoded data (E2), and at least one decoder pursuant to
the sixth aspect for decoding the encoded data (E2) to
generate decoded output data (D3).

Optionally, the codec is implemented such that the at least
one encoder and the at least one decoder are mutually
spatially remote and mutually coupled together via a data
communication network. More optionally, the codec is
implemented such that the data communication network is
configured in a manner of a peer-to-peer communication
network. Optionally, the codec is implemented such that its
encoder and its decoder are symmetrical in their processing
of data therethrough; in other words, processing functions
executed in the encoder are implemented as corresponding
inverse functions and executed in a reverse order in the
decoder.

It will be appreciated that features of the invention are
susceptible to being combined in various combinations
without departing from the scope of the invention as defined
by the appended claims.

DESCRIPTION OF THE DIAGRAMS

Embodiments of the present disclosure will now be
described, by way of example only, with reference to the
following diagrams wherein:

US 9,729,169 B2

13

FIG. 1 is an illustration of a known encoder and a known
decoder for encoding and decoding data;

FIG. 2 is an illustration of a method of encoding data
pursuant to an embodiment of the present disclosure;

FIG. 3A is an illustration of an embodiment of an encoder
and a decoder, collectively a codec, pursuant to the present
disclosure; and

FIG. 3B is an illustration of an alternative embodiment of
an encoder and a decoder, collectively a codec, pursuant to
the present disclosure, wherein decoded data D3 in the
decoder is transcoded to generate transcoded data D4.

In the accompanying diagrams, an underlined number is
employed to represent an item over which the underlined
number is positioned or an item to which the underlined
number is adjacent. When a number is non-underlined and
accompanied by an associated arrow, the non-underlined
number is used to identify a general item at which the arrow
is pointing.

DESCRIPTION OF EMBODIMENTS

In overview, the present disclosure is concerned, for
example, with encoders, decoders, codecs and associated
methods of operation. Moreover, embodiments of the pres-
ent disclosure are capable in operation of improving delivery
of code tables, frequency tables, length of code word tables,
or probability tables compared with known methods. Fur-
thermore, embodiments of the present disclosure are also
capable of delivering one or more Huffman trees, in a
manner which enables fewer bits to be used for delivery of
the one or more tables; there is thereby provided an increase
in a data compression ratio achievable during data encoding,
especially when the amount of coded data accompanying the
one or more tables is relatively small. Code tables, fre-
quency tables, length of code word tables or probability
tables are needed for many different entropy coding meth-
ods, for example for variable length coding (VLC) methods
such as Huffman coding, Arithmetic coding, Range coding,
but not limited thereto. Both encoders, for example trans-
mitters, and decoders, for example receivers, beneficially
employ methods as will be described below.

Embodiments of the disclosure described below are rel-
evant to a world in which a volume of data being stored and
communicated is increasing rapidly with a passage of time.
The storage and transmission of such data consumes con-
siderable storage capacity, transmission bandwidth and
energy. Most of the data in the world is captured audio
signals, captured video signals, captured images, text data,
seismographic data, sensor signal data, analog-to-digital
(ADC) converted data, biomedical signal data, calendar
data, economic data, mathematical data, binary data but not
limited thereto. Embodiments of the disclosure are operable
to reduce an amount of encoded data for all the aforemen-
tioned data types, and also for other types of data; there is
thereby enabled efficient delivery of code tables, frequency
tables, length of code word tables or probability tables, thus
enabling use of smaller data chunks that reduce the entropy
of the data efficiently, namely size of the data efficiently.

Moreover, smaller data chunks can be effectively handled
via parallel processes to output results faster, and such
parallelism is common in modern microprocessor architec-
ture, especially in future configurations of microprocessors,
for example data processor arrays and high speed configu-
rations of RISC (reduced instruction set computer) proces-
SOrs.

For a given encoding method, a corresponding code table
includes information indicative of lengths of code words, for

20

25

30

35

40

45

50

55

60

65

14

example expressed in bits, codes for representing the code
words, and indices (namely “indexes”) of the code words.
The code table can also be generated from the lengths of the
code words. The indices (namely “indexes”) of the code
words represent the values of corresponding original sym-
bols that are coded with the code words. Similarly, the
frequency table contains frequencies of occurrence of the
symbols and the indices of the symbol. The indices of the
symbols represent the values of the original symbols coded
by the indices respectively. The frequency table can be
converted to a probability table and the probability table can
be used as a rough estimate of the frequency table. The
conversion between the frequency table and the length of
code words and vice versa can also be done.

When any of the aforementioned tables are delivered, one
very important parameter in such delivery is the maximum
index of the table. The maximum index of the table repre-
sents how many different symbols, or how many possible
different symbols, are available in the delivered table, and
also in the input data. For example, if given data is:

4,3,0,1,0,4,3,4,

then the real maximum index is 4, and the minimum index
is 0, which means that there are potentially 5 (max-min+
1=4-0+1) different symbols (0, 1, 2, 3, 4) present in the data.
On account of there actually being only 4 different symbols
(0, 1, 3, 4) present in the data, the table is optionally also
delivered by using ‘3’ as the maximum index, namely a
count of available different symbols, instead of ‘4’, namely
possible different symbols. When the value 3 is used for the
maximum index value of the table, then some other mecha-
nism is required for delivering the information concerning
which symbols are used for each table indices.

When the symbols are in order, there is optionally deliv-
ered the real maximum index (4) and availability bits, for
example, 11011 in this example case. Such delivery maps so
that the table index O=symbol O that is marked as index, and
an associated symbol pair will then be (0, 0). Similarly, a
remainder of the index and symbol pairs are (1, 1), (2, 3) and
(3, 4). It is also optionally possible to use index and symbol
pairs directly for defining the used indices for different table
indices, and then to deliver the maximum index of table as
3”. This is a very valuable method, for example when the
symbols in the delivered table are sorted based upon their
frequencies.

For example, in this case above, index and symbol pairs
are, for example, (0, 4), (1, 0), (2, 3), and (3, 1). Sometimes,
the used index and symbol pairs are predefined, whereas at
other times the index of the used symbol and index pair table
are delivered, In another different situation, the index and
symbol pairs are delivered together with the encoded data
(E2). In yet another different situation, the decoder 60 is
operable to retrieve the used index and symbol pairs from a
known location; in still another different situation, the
decoder 60 is operable to retrieve the used index and symbol
pairs from the location whose corresponding location infor-
mation was delivered together with the encoded data (E2).

In some situations, it is advantageous to approximate the
table to be delivered with the help of symmetry. Utilizing
symmetry makes it possible to deliver the coding table being
used with a smaller data size than delivering an entire table
would require, without regard to whether or not the table is
based on code lengths, on probabilities or on frequencies of
occurrence. Moreover, it is faster to generate a symmetrical
table both in the encoder 50 and in the decoder 60, because
it contains less elements, namely fewer symbols. However,
using symmetry makes the table slightly sub-optimal, but
the savings gained in delivered table data size compensates

US 9,729,169 B2

15

for that loss entirely or more, especially if the amount of data
being sent is reasonably small.

In the latest example above, symmetry is optionally
utilized in delivering the table, because a symbol value ‘0’
is more probable than ‘1’ and correspondingly, a symbol
value ‘4’ is more probable than ‘3. Moreover, the prob-
abilities of symbol values ‘0’ and ‘4’ are close to one
another, and correspondingly, the probabilities of symbol
values ‘1’ and ‘3’ are also close to one another. However, the
value ‘2’ does not occur at all in the data, so therefore it is
a most improbable value, regardless from which direction it
is inspected.

In cases when symmetry is utilized, a coding table can
thus always be generated based on the sums of occurrences
of symmetrically corresponding elements. In such a case,
there are altogether 5 occurrences of symbol value ‘0’ and
‘4’, and correspondingly, there are altogether 3 occurrences
of symbol value 1’ and ‘3’. The element ‘2’ does not occur
at all in the data, and therefore it does not necessarily need
to be given its own symbol. However, in some situations, a
symbol can be generated for element ‘2 as well, and in that
case it would be included in both the right hand table and the
left hand table, when symmetry is utilized.

Thus, a range coding table is optionally generated in such
a way that the counts of occurrences for the ranges would be
5, 3 and (0), and thus the range table being used would be
5,3,0,3, 5 for symbols zero to four, even though the optimal
frequency-of-occurrence—based range table of course
would be 3, 2, 0, 1, 2, which then would require the delivery
of four values for frequency of occurrence, as compared
with an optional implementation described above that is
based on symmetry, where only two values for frequency of
occurrence need to be sent, namely delivered.

This same idea based on symmetry is optionally used with
other coding methods such as Huffman coding, and in that
case, a symmetry-based table would be, for example, a table
wherein left hand values receive the code ‘0’ and right hand
table values receive the code value ‘1. Thus, the Huffman
code words would be, for example, 01, 00, does-not-exist,
10, 11. Alternatively, if it is desired to reserve an option for
the value ‘2’ to exist in future, then the codes would be 01,
001, 000/100, 101, 11. In this implementation, in principle,
only two code lengths would need to be sent/delivered (1
and 1), or else three code lengths (1, 2, 2), and the table
being used would be entirely recoverable in the decoder 60
in cases when it is known that the table is utilizing symme-
try. In longer tables, the advantages would be even more
distinctly observable.

It will be appreciated that the piece of information on
whether the table is utilizing symmetry or not, is optionally
already known previously, or else it is transmitted/delivered
in the same manner as the piece of information on whether
an optimal table or a predefined table is being used, or a table
that was generated dynamically from previous tables. The
delivery of the piece of information on whether or not the
table is utilizing symmetry is executed by sending the index
of the table being used to the decoder 60.

For example:

(1) a table index ‘0’ means that the table is sent/delivered
in its entirety;

(ii) a table index ‘1’ means that the table is symmetrical
and that only a half of it will be delivered;

(iii) table indices 2 to 63 mean that a pre-defined table is
being used; and

(iv) table indices 64 to 127 mean that a previously
delivered and stored dynamic table is being used.

20

25

30

35

40

45

50

55

60

65

16

It will be appreciated that the symmetric tables can also be
utilized as predefined or as dynamically stored tables.

Optionally, various coding methods are used, for
example, with ODelta coding or without it, wherein ODelta
coding involves coding data differentially into a sequence of
0 and 1 values and employing a counting wraparound.
Moreover, when utilizing these various coding methods, it is
advantageous to employ them in combination with the table
index of the table being used, also to optionally express
whether the ODelta method has been executed on the data
before coding or not, and also whether or not the decoder 60
must then correspondingly execute the inverse operation
after decoding.

In such a case, for example the table indices are otherwise
the same, but the value 128,,. is added to indicate that
ODelta has been used. If this insertion has not been per-
formed, then ODelta has not been executed on the data
before coding. Of course, optionally, other values can be
also added to the table index value; however, it will be
essentially appreciated that a table index expresses which
kind of table is being used, and which kinds of additional
data are transmitted/delivered with the table index, together
with encoded data.

Referring to FIG. 2 and FIG. 3A, there is provided an
illustration of steps of a method of encoding input data D1
to generate corresponding encoded output data E2; the steps
of the method are indicated generally by 10, and optionally
employ one or more of: a step 20 of generating one or more
frequency tables 25, a step 30 of generating one or more
coding tables 35, a step 40 of analyzing the input data D1 to
select a most suitable encoding approach, but not limited
thereto. When implementing such a method 10 of encoding
the input data D1, there has to be some mechanism available
that changes one or more symbols present in the input data
D1 to corresponding indices (namely “indexes); for
example, a given index included in the indices is equal to a
pixel value, for example in a pixel array image. The index
can also be equal to the pixel value minus a smallest pixel
value present in the pixel array image. In such a situation,
the method also needs to deliver the smallest pixel value in
the encoded output data E2, namely to be delivered some-
how from an encoder 50 to a corresponding decoder 60 by
employing the method 10, or by employing an inverse
thereof, because otherwise the decoder 60 is not able to
decode a corresponding given symbol back to its original
value via use of its given index. The index can also be
created from multiple information, for example via one or
more of discrete cosine transforms (DCTs), individual AC
coeflicients containing absolute AC coefficient values, signs
of the AC coeflicient, run of the zero AC coeflicients
between it and a previous non-zero AC/DC coefficient, and
an indication flag that represents information pertaining to
the current AC coefficient, and a last non-zero AC coefli-
cient. The index is also susceptible to being created based on
multiple pixel values that are combined together, for
example a 24-bit RGB-pixel that contains 8-bit R, G and B
pixel values or a 10-bit value that contains two 5-bit Y pixel
values.

Referring to FIG. 3B, transcoding of the data D3 in the
decoder 60 to generate corresponding transcoded data D4 is
optionally implemented via a transcoder 70, for example in
a multicasting situation wherein;

(i) there are multiple devices, each device hosting a
decoder 60 for receiving the encoded data E2;

(i) at least some of the multiple devices are mutually
different, and have associated mutually different output

US 9,729,169 B2

17

formats, for example display screen layout, resolution,
aspect ratio, display screen driver buffer capacity, and so
forth.

Transcoding of the data D3 is required to generate the
corresponding data D4 which can be handled in a compat-
ible manner by hardware and/or supporting software layers
of the devices; the devices are optionally based upon com-
puting hardware, for example smart phones, specialist sci-
entific equipment, televisions, hifi apparatus, videoconfer-

5

encing apparatus and similar. The transcoder 70 is 10

implemented in software and/or in dedicated data processing
hardware, for example an ASIC.

As mentioned below, when implementing the method 10,
there always has to be included a step that changes one or
more symbol values to one or more corresponding indices,
and this step, or an inverse thereof, has to be communicated
to the decoder 60 or otherwise they have to be preset both
for the encoder 50 and for the decoder 60. An easiest
approach to achieve such communication is to employ a
direct relationship between a given symbol value and its
corresponding index value, for example an index value is
equal to a corresponding pixel value, or the index value is
the number that is based from the bits representing S=sign
flag, V=10-bit coefficient value, R=6-bit nonzero run value,
and L~last flag, for example as represented by:

SVVVVVVVVVVRRRRRRL

It is not always possible to use a direct relationship for
multiple reasons, for example, when a direct relationship is
employed:

(a) it is impossible or inefficient to encode or decode data,
indices (namely “indexes™), frequencies, probabilities or
lengths of symbols;

(b) an amount of different indexes is huge; or

(c) all symbols do not have frequency information avail-
able and for that reason some algorithms are not able to
generate codes for those symbols.

20

30

18

combinations are so huge that there is no sense to store all
the different tables in data memory, or the delivery of such
LUT’s requires too much data to be communicated between
the encoder 50 and the decoder 60. Thus, methods 10
pursuant to the present disclosure enable efficient transmis-
sion of frequencies, length of code words, or probabilities
from the encoder 50 to the decoder 60 to be achieved using
suitable symbols to index one or more transformations. It is
always beneficial to use length of code words instead of the
frequencies, if the coding method is not able to utilize more
accurate information provided by way of frequency infor-
mation, for example VLC coding methods are not able to
utilize frequency information, but conversely Arithmetic
coding and Range coding are capable of utilizing frequency
or probability information.

An example of an embodiment of the disclosure will now
be described in greater detail, wherein there is employed
length of code words for encoding purposes; however, a
corresponding embodiment which employs frequency infor-
mation or probability information is also feasible.

In the encoded data E2, see FIG. 2, for example an
encoded data stream, there is included data values that can
contain 20 symbols, namely values from 0 to 19, but only 8
data values, namely minimum value=2 and maximum
value=19, of them are actually available in the current data
stream. These minimum and maximum values are optionally
also delivered separately as described later to enable more
savings in table delivery to be achieved. Corresponding
frequencies, wherein sum=148, length of code words has a
minimum length=1 and a maximum length=6, and indices
(“indexes”) for the symbols are, for example, based on Table
1 below, it can be determined, without compressing these
symbols, that there are required 148*5 bits=740 bits to
convey the bit stream.

TABLE 1

Example bit stream encoding

Freql Freq3
Value Frequency CWLen (bits) Frequency2 (bits) Index1 Index2
2 7 4 4 (4) 84 128 (4) 2 0
4 2 6 1 (6) 24 32 (6) 4 1
7 81 1 32 (1) 972 1024 (1) 7 2
9 1 6 1 (6) 12 16 (7) 9 3
12 35 2 16 (2) 420 512 (2) 12 4
13 9 4 4 (4) 108 128 (4) 13 5
14 5 5 2 (5) 60 64 (5) 14 6
19 8 4 4 (4) 96 128 (4) 19 7

Some of such issues (a) to (c) can be, at least partially,
solved by using escape codes or using some logic that
generates frequency information for all symbols. Quite
often, it is still beneficial to use some other approach to
convert symbols to indices (also known as “indexes”). One
approach involves always ensuring that there is some look-
up-table (LUT) that specifies indexes that are used for
available symbols; here, the escape code is very beneficial
for reducing the size of encoding tables. This LUT has to be
available in the encoder 50 and in the decoder 60, or it has
to be delivered from the encoder 50 to the decoder 60, or
vice versa. When more optimal coding is needed to enable
better compression to be achieved, there are beneficially
employed multiple tables that can be selected based on the
index of available LUT’s. However, this is sometimes not
practical, because the frequency, or length of code word,

55

60

65

For a coding regime as presented in Table 1, if there is not
a suitable frequency table or code table available, for
example predefined or specifiable by way of a reference
index, in the encoder 50 and in the decoder 60, then there are
several methods which are potentially available for sending
these needed code words, namely lengths and codes, from
the encoder 50 to the decoder 60.

A first example method modifies the frequencies of the
data and then generates a corresponding code table, wherein
a least probable symbol, namely longest code word, is
allocated one additional bit and all symbols that are not
available in the data are allocated such long lengths of code
word that they do not effect the coding, but enables the
encoder 50 and the decoder 60 to create a mutually similar
frequency table and a mutually similar Huffman tree. On
account of there being 12 missing symbols, such frequency

US 9,729,169 B2

19

modification can be implemented, for example, by multi-
plying the original frequencies by 12 and setting a frequency
value of 1 for all the symbols that do not have any real
frequency value, namely frequency value=0. The modified
frequency values can be seen, for example, from the Fre-
quency2 column of Table 1 for all the symbols that have
frequencies available. Based on these new frequencies, the
lengths of code words for all 20 symbols can be created as:

11,11, 4, 11, 6, 11, 11, 1, 11, 7, 11, 11, 2, 4, 5, 10, 10, 10,
10, 4

Using this kind of code table, there are (7*4+2*6+81*1+
1¥7+35%249%44+5%5+48*4=) 291 bits needed for delivering
the coded symbols from the encoder 50 to the decoder 60.
For correct data encoding and subsequent data decoding, the
encoder 50 and the decoder 60 have to use similar frequen-
cies, wherein such frequencies can be created based on these
new lengths of code words and the result can be seen from
column Freq3 (=2(mexbien-biden)y for symbols that have
frequency; “maxbitlen” is an abbreviation for “maximum bit
length”, and “bitten” is an abbreviation for “bit length”.
Other symbols are allocated frequencies 2 (bitlen=10) or 1
(bitlen=11).

This first method enables the generation of a code table
that contains all possible symbols, namely 20 symbols in the
aforementioned example; it is beneficial when the same code
table is used also for other similar types of data. Such kind
of lengths can also be optionally compressed with any
compression method, without any additional information
and so the code table is easy to be delivered between the
encoder 50 and the decoder 60 in potentially all situations.
For example, without compression, this code table requires
4 bits for representing all length of code words=>20
length*4 bits/length=80 bits.

This first method has an inefficiency, compared to optimal
Huffman codes, of only 1 bit for every least probable
symbol, namely=1 bit in this first example method. Addi-
tionally, there are also those bits that are needed for com-
pressing and delivering the lengths of code words, namely
code table, from the encoder 50 to the decoder 60. Number
20, namely the number of all possible symbols, is optionally
delivered, or it may also be known by the decoder 60.

Next, a second example method will be described to
illustrate an alternative embodiment of the present inven-
tion. The second method generates the lengths of the code
words only for the symbols that are available, namely for
those symbols that have a frequency value >0. An index used
for Huffman code table generation is index2 (see Table 1),
but the index that has to be delivered from the encoder 50 to
the decoder 60 is index1, namely=symbol value (see Table
1). Such generated lengths of code words can be seen from
column CWLen (see Table 1). Using this kind of code table,
there are (7*4+2*6+81*1+1*6+35%249*4+5%548%4=) 290
bits needed for delivering the coded symbols. Based on these
lengths of code words, the encoder 50 and the decoder 60 are
operable to create a frequency table seen in column “Freql”
of Table 1.

The first delivery method for this kind of code table
delivers the length of code word and the index of the code
word as a pairs of numbers as follows:

2,4),4,6),(7,1),(9,6), (12, 2), (13, 4), (14, 5), (19, 4)

wherein the pairs are denoted by brackets.

Such a delivery method requires 5 bits for every index and
3 bits for every length of code word=>8 bits for every pair
and 8*8 bits=64 bits in total.

These indices (namely “indexes”) can also be delta
encoded and then the pairs are as follows:

(2,4),(2,6), (3, 1), (2,6), 3, 2), (1, 4), (1, 5), (5, 4)

20

25

30

35

40

45

50

55

60

65

20

Now, it will be appreciated that only 3 bits for every index
and 3 bits for every length of code word is needed=>6 bits
for every pair and 8*6 bits=48 bits to convey the code table.

These index and lengths of code word values are benefi-
cially separated to own corresponding data streams that
often enable improved compression to be achieved in com-
parison to combined 8- or 6-bit values. The streams are now:

2,4,7,9,12,13, 14, 19

and

4,6,1,6,2,4,5,4
= 8*5 bits+8*3 bits=64 bits in total.

When indices (“indexes™) of a first stream are delta coded,
there is thereby generated:

2,2,3,2,3,1,1,5

and

4,6,1,6,2,4,5,4
= 8%3 bits+8%3 bits=48 bits in total.

This is a best, namely optimal, delivery method, when an
amount of possible symbols is high, but when the data
contains only a few mutually different symbols.

All these aforementioned data streams can be compressed
and delivered from the encoder 50 to the decoder 60, when
in operation. There is no inefficiency associated with this
method compared to optimal Huffman codes, but this
method of the disclosure still consumes considerable bits to
deliver those streams containing information of indices
(namely “indexes”) and lengths of code words. The value 8,
namely=number of available symbols, has to be delivered
also, because otherwise the decoder 60 is not able to
ascertain how many values or pairs should be decoded to the
code table. In this case, a number 20, namely number of all
possible symbols, does not need to be delivered between the
encoder 50 and the decoder 60.

Some of the methods described in the foregoing are
susceptible to being employed in combination for achieving
especially favourable encoding of the input data D1 in the
encoder 50 to generate the corresponding encoded data E2,
likewise an inverse thereof at the decoder 60. Optionally, all
these solutions create the Huffman codes only for the
symbols that are available, for example in a manner akin to
the second method. Moreover, the frequency table generated
from these data lengths can be seen in column Freql (see
Table 1).

In comparison to the first method, the second method is
also able to set the length of the code word to zero, when it
is not available, but it is still necessary to deliver such
information from the encoder 50 to the decoder 60; this is
possible to implement due to a fact that a real length of a
code word can never be zero. This causes following stream
of lengths:

0,0,4,0,6,0,0,1,0,6,0,0,2,4,5,0,0,0,0, 4

which only requires originally 3 bits for all the length of
the code words=>20%3 bits=60 bits.

These types of lengths can also be compressed with any
compression method without any additional information and
so the code table is easy to be delivered between the encoder
50 and the decoder 60 in all situations. Moreover, this data
also often contains numerous zero values and so it can be
easily compressed, for example by using VLC or RLE. A
number 20, namely a number of all possible symbols, is
optionally delivered from the encoder 50 to the decoder 60,
or it is known a priori by the decoder 60.

Another embodiment uses bits to specify which data
symbols are available and which are not. In a situation where
there are generated two data streams, wherein a first stream
contains bits and a second contains lengths of the code
words as follows:

US 9,729,169 B2

21

0,0,1,0,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0, 1

and

4,6,1,6,2,4,5,4

there is required 1 bit for every symbol and 3 bits for
every length of available code word=>20%1 bits+8%3
bits=44 bits in total. This is usually a best, namely optimal,
delivery method.

Such streams are further compressible by utilizing an
entropy modifier (EM) and/or VLC. As aforementioned, the
number 20, namely the number of all possible symbols, is
optionally delivered between the encoder 50 and the decoder
60, or it is supplied a priori to the decoder 60. Moreover, the
number 8, namely the number of available symbols, does not
need to be delivered between the encoder 50 and the decoder
60, because it can be calculated from the bits that have a
value 1.

For all the previous described methods pursuant to the
present disclosure, the encoder 50 and the decoder 60 have
to possess information regarding how many different sym-
bols can be used, for example 20 symbols in the aforesaid
example, or how many different symbols are available, for
example 8 in the aforesaid example. If the value, namely the
number of different symbols, is not available in the decoder
60, it has to be delivered to the decoder 60. Optionally, some
data can be saved in a table which is delivered by sending
small amounts of additional information to specify a range
in which the data values are available, for example, it is
feasible to deliver values 2 (minimum) and 19 (maximum)
to specify a range in which values are to be included. In this
example, such delivery often uses more bits than it saves, but
in a situation where, for example, 8-bit pixels contain only
values from 60 to 200, the saving in bits to be communicated
from the encoder 50 to the decoder 60 is remarkable. The
delivery of such a range enables that all the bits or values
that are otherwise used for smaller than the smallest value
and bigger than the biggest value do not need to be delivered
from the encoder 50 to the decoder 60. Moreover, it will be
appreciated that, when the range is delivered from the
encoder 50 to the decoder 60, there is no need to deliver the
first and the last index value in a situation wherein the index
values otherwise were sent with or without delta encoding.
The same applies also for the first and the last value 1 bits
in the last example. The delivery of minimum and maximum
values is optionally also utilized when employing other
methods, for example ODelta coding, a method disclosed in
patent application GB1303661.1, filed on 1% March, 2013 by
Gurulogic Microsystems Oy, hereby incorporated by refer-
ence. A best advantage of delivering minimum and maxi-
mum values is achieved when all the methods moditying
entropy and implementing entropy coding use the same
information and that is delivered only once.

The methods as described in the foregoing are optionally
employed selectively, for example in response to how many
symbols are to be encoded in a given data chunk, for
example divided from a total body of data to be communi-
cated from the encoder 50 to the decoder 60. Thus, the
selection of the previously elucidated methods depends on
how many different symbols are available, how many of
them are really used, what is the frequency of the least
probable symbol, and how indices (namely “indexes”) of
available symbols are distributed through the possible sym-
bols.

The scaled probabilities can also be calculated for the
symbols shown in Table 1 based on the frequency values.
The number of symbols is, for example, 148. The scaled
probabilities in this example are beneficially calculated by
using two different probability multipliers, namely 256 and

20

25

30

35

40

45

50

55

60

65

22

32. Using the probability multiplier 256 for the first symbol,
there is therefrom calculated the scaled probability value as
Round(256*7/148)=12, wherein “Round” is an integer
rounding-up function. All the calculated scaled probability
values with multiplier 256 are thus as follows:

12, 3, 140, 2, 61, 16, 9, 14

The sum of the scaled probability values is 257, namely
>256, and it is beneficial to reduce some value by 1. Such a
reduction is beneficially implemented in order to cause as
little effect as possible to the actual coding. For example, in
this case, the value 2, namely the smallest value, can be
reduced to a value 1, or the value 9, namely the smallest
rounded up value, can correspondingly be reduced to a value
8, so that the scaled probability values with multiplier 256
for Range coding or for Arithmetic coding are as follows:

12, 3, 140, 1, 61, 16, 9, 14 (sum=256=probability multi-
plier).

The delivery of scaled probabilities (with multiplier 256)
can be made as follows:

0,0,1,0,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0, 1

and

12, 3, 140, 1, 61, 16, 9, 14

When the probability multiplier value is 32, then the
scaled probability values are as follows:

2,0,18,0,8,2,1,2

and after sum equalization as follows:

1,0,18,0,8,2,1,2

Now, it will be appreciated that a zero value is calculated
for some of the scaled probability values. This means that
those values must be delivered, for example, by using an
escape symbol. The scaled probability for the escape symbol
needs to be calculated, and it may not be smaller than the
value 1. In this case, it gets allocated a value 1, because
Round (32*(2+1)/148)=1. Now, this escape symbol has to be
added to the other symbols and the new set of symbols is
then: “escape”, 2, 7, 12, 13, 14, and 19. Those new symbols
are beneficially allocated indexes in a range from 0 to 6. The
scaled probabilities for the new symbols, when the prob-
ability of the escape symbol is reduced from the one or more
other symbols, for Range coding or Arithmetic coding are as
follows:

1 and 1, 18, 8, 2, 1, 1 (sum=32=probability multiplier).

The delivery of scaled probabilities (with multiplier 32
and escape code) can be made as follows:

0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0, 1

and

1,1,18,8,2,1,1

It will be appreciated that the first symbol is the escape
symbol and bits specify the other symbol values.

When the escape symbol is defined, this table can be
better used also in the future, as aforementioned. Now, also
the symbols that were not present in this data can be
delivered using the escape symbol, if they will be present in
the future data.

Utilization of escape codes with range encoding are
presented in another patent application by the Applicant
Gurulogic Microsystems Oy, Title: “Encoder, decoder and
method” filed on 20 Feb. 2014 with application number
GB1403038.1, hereby incorporated by reference.

As mentioned above in the explanation of Table 1, it is
optionally also possible to use a predefined table or a table
described by an index instead of the delivered table, when
the data D1 is encoded in the encoder 50, and subsequently
decoded in the decoder 60. This means that the used code,
frequency, probability or code length table is known before-
hand by the encoder 50 and by the decoder 60, or the table
is selected from a limited set of alternative tables, and the

US 9,729,169 B2

23

encoder 50 delivers the selection to the decoder 60. The
predefined table is optionally available locally to the decoder
60.

The table can be previously stored based on the delivered
parameter, for example an index of the table and/or a
maximum index of the table. Alternatively, the table can be
generated with an algorithm implemented in an initialization
function or with an algorithm in the previously stored table;
such creation, namely generation, of the table, is also based
on the delivered parameters, for example on an index of the
table and/or on the maximum index of the table and/or on the
minimum index of the table. Instead of a previously stored
table, it is also optionally possible to use a table that was
delivered earlier during the data encoding of the data D1 to
generate the encoded data E2.

For example, when VLC coding is used, typically the
length of codes are stored earlier for different table indices,
and the code table can be generated based on those length
values by using the full table or by using only a part of the
table values. The used part can be defined based on the
delivered table parameters or based on the table index.
Similarly, when range coding is used, typically the prob-
ability table is generated based on the form of the table, for
example delivered via use of a table index, and the length of
the table, for example delivered as a maximum index of the
table.

There will now be described another example method of
the disclosure that enables efficient code delivery without
using a separate escape symbol, while still enabling all the
symbols to be coded very efliciently for a current given data
chunk and for future data chunks that have slightly different
symbol frequencies. This other method can be implemented
so that all the symbols, namely those which have values
available as well as those which do not have values avail-
able, will be allocated at least the value one as the scaled
probability. If the scaled probability value is 1, then the
availability bit will be equal to 0, and for the other scaled
probability values the availability bit will be equal to 1. The
scaled probability value then needs to be delivered only for
the symbols whose availability bit is equal to 1. Details of
the method can be found in the patent application by the
Applicant ~ Gurulogic ~ Microsystems Oy, namely
GB1403038.1, hereby incorporated by reference, but the
table delivery in the previous example above is then as
follows:

0,0,00,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0

and

10, 4 (sum=18%1+10+4=32=probability multiplier).

This example now shows an advantageous solution,
which yields quite similar performance with Range coding
than can be achieved with Huffman coding for encoding the
entropy of data. Such a solution is able to deliver code
probability tables very efficiently. With other types of data,
or with other types of probability multiplier values, this
solution is clearly, in many situations, a best, namely opti-
mal, coding method to employ. For that reason, the delivery
of its code table is herewith described in greater detail.

Optionally, the encoder 50 and the decoder 60 can store
all the tables, in a static manner or a dynamically updatable
manner, which are to be utilized by the encoder 50 and the
decoder 60. If the tables are stored, they are beneficially
identified in data sent from the encoder 50 to the decoder 60
by way of an index which uniquely identifies its correspond-
ing stored table. Such indexing of tables potentially enables
ahuge saving of overhead data otherwise required to sent for
delivering a code table from the encoder 50 to the decoder
60.

20

25

30

35

40

45

50

55

60

65

24

The utilization of the previously stored table can be
appreciated, for example, in a following example. For the
delivered table, the last probability table presented in the
previous example, namely 1, 1,1, 1,1, 1, 1, 10, 1, 1, 1, 1,
4,1, 1, 1, 1, 1, 1, 1, is selected to be added for reuse
purposes; for such purpose, the table is allocated an index
value of, for example, “17”. Now a new data chunk is
needed to be encoded and it has symbol values and frequen-
cies as provided in Table 2.

TABLE 2

Example with second symbol values and frequencies for table reuse

Value Frequency
1 3
5 1
7 68
8 1
10 4
12 32
14 3

Now all the available probability tables for Range encod-
ing can be evaluated from Table 2, and it is very probable
that the table 17 is selected to be the best probability table
to be used for delivering this new data from the encoder 50
to the decoder 60 with Range coding. At least, it is easy to
see that the delivery of a new probability table requires a lot
more data than the amount of additional data that the table
17 creates over the ideal entropy encoding result. For that
reason, table 17, or some other probability table, can be
reused instead of needing to deliver a new better optimized
probability table. When a table is reused, its index 17 is
delivered from the encoder 50 to the decoder 60, and after
that, Range coding values can be delivered from the encoder
50 to the decoder 60. When a table cannot be reused, then
a value, for example O or a next free table index, that defines
a new table delivery is first delivered from the encoder 50 to
the decoder 60, and then the table is also delivered from the
encoder 50 to the decoder 60, and after that, the Range
coding values can be delivered from the encoder 50 to the
decoder 60. Often, the amount of coded symbols also needs
to be delivered, for example typically before Range encoded
data, which enables proper decoding of data in the decoder
60.

Optionally, it is also possible to modify the code table that
is already in use and only send the changes therein, thus
resulting to a new code table. Further optionally, the already
delivered code table can be used in adaptive manner after
delivering/receipt.

Optionally, the encoder 50 and the decoder 60 are oper-
able to create similar full tables that also enable coding of
other symbols for future use of similar types of data, where
the currently missing symbols might be present. These tables
can be stored and provided with a new code table index. It
is possible to store both types of tables, namely one without
fulfill and another with fulfill. Moreover, it is also possible
to store only the original table and, when it is needed next
time with fulfill property, it can then be indicated separately
in a communication from the encoder 50 to the decoder 60.
A solution that stores fulfilled tables is more preferable,
because it simplifies decision-making and does not require
any additional indication to be delivered indicative of
whether or not the table needed is fulfilled. The fulfill of the
table can be also implemented such that the table containing
all the values is filled with frequencies decreasing from, for

US 9,729,169 B2

25

example, 4 to 1 so that the next symbols will be allocated
relatively shorter symbols and the last symbols will be
allocated relatively longer symbols. By employing such an
approach, the order of symbols corresponds to an order of
available symbols in a future stream of data.

In the examples described in the foregoing, delivery of
lengths of code words and delivery of scaled probabilities
are beneficially employed, although similar techniques can
also be used for delivering frequency values needed for
Huffman coding, Arithmetic coding or Range coding. Ben-
eficially, a best coding method to employ uses least bits
when the encoded data is added with the overhead informa-
tion that is needed to deliver the code table, the length of
code words, the probability table or the frequency table,
thereby enabling, for example, smaller portions of data to be
sent from the encoder 50 to the decoder 60 using encoding
methods specifically optimized for a nature and/or data type
of content included in the smaller portions of data, namely
data chunks. For such reasons, the best result with Arith-
metic coding and Range coding can be achieved when the
frequency values are quantized, at least to a limited extent,
so that the frequency table presents nearly correct values that
can be delivered with clearly less amount of bits than the
exact table and so the optimality is only slightly reduced
from the coding of symbols, for example when employing
entropy coding. Moreover, delivery of scaled probability
tables enables very eflicient and nearly optimal Range
coding and Arithmetic coding implementations to be real-
ized.

When there is only a small amount of data to be com-
municated from the encoder 50 to the decoder 60, it is
typically better to communicate the data without substan-
tially employing any form of encoding. However, when the
amount of data increases, then it is beneficial to employ
Huffman coding with approximately correct lengths of code
words. As a volume of data that is to be communicated from
the encoder 50 to the decoder 60 increases, progressively
more benefit is derived from using more accurate code
tables. Moreover, when there is a considerable amount of
data to be Arithmetically coded or Range coded, best coding
results are obtained when more efficient entropy coding is
employed; there is thereby gained a coding advantage over
the bits needed for delivering a frequency or a probability
relative to the bits needed for delivering a code table.
Delivering an index of a probability table, a frequency table,
length of code word tables, or a code table is always similar,
and when an index is used, the method that has the best table
available enables a best compression performance to be
achieved, A selection of the coding method used has also to
be delivered from the encoder 50 to the decoder 60, if it is
not fixed based on the data or based on the amount of data.

The encoder 50 and the decoder 60 collectively form a
codec 100. In a practical situation, there may be one encoder
50 and one or more decoders 60, for example in a situation
where the encoder 50 generates the encoded data E2 which
is broadcast widely to numerous decoders 60, namely “mul-
ticasting”, for example via wireless, optical fibre communi-
cation network and similar. Moreover, situations can arise,
for example in a peer-to-peer data communication network,
wherein a decoder 60 sources its encoded data E2 from
several encoders 50 coupled within the peer-to-peer net-
work, where the encoded data E2 is supplied in separately
encoded data chunks which are collected together at the
decoder 60; such a configuration is beneficial because cer-
tain portions of the encoded data E2 can be sourced more
locally to the decoder 60 which eases data load on long-
distance data communication network links employed for

5

20

25

30

35

40

45

50

55

60

65

26

implementing such peer-to-peer networks. The encoder 50
and the decoder 60 are susceptible to being implemented in
dedicated digital hardware, in computing hardware which is
operable to execute one or more software products recorded
on non-transitory data storage media, or a combination
thereof. The encoder 50 and decoder 60 are useable in audio
recording and/or playback apparatus, in video recording
and/or playback apparatus, in personal computers, in smart
phones, in digital cameras, in video cameras, in televisions,
in Internet terminals, in scientific apparatus, in surveillance
and/or security systems, in satellites configured for ground-
monitoring functions, in seismic sensing systems, but not
limited thereto.

Embodiments of the disclosure are capable of enabling
more efficient delivery of tables, for example coding tables,
frequency tables, probability tables or lengths of code
words, thereby making it attractive to split data into smaller
chunks of data, for example which can then be encoded
individually in an optimal manner. Moreover, the tables are
optionally encoded using an entropy encoding method.
These smaller data chunks optionally need their own corre-
sponding code table, frequency table, probability table or
lengths of code words; this is beneficial if there are many
different tables available, as only the indices of given tables
need to be delivered for different data chunks. Otherwise, the
new table also needs to be delivered to the decoder 60. When
a given table is delivered, it is often beneficial to store it in
a data memory, for example a data memory of the decoder
60, for future use with its own unique reference index.

In an example embodiment of the disclosure, every data
block is delivered as an individual data block, with support-
ing information sent describing how many data blocks
belong to a mutually similar body of data; such communi-
cation of the data blocks is often quite inefficient, because,
for all the data blocks, there is need to deliver an identifi-
cation of coding method employed, an amount of symbols,
and a code table, frequency table or probability table that is
employed. Additionally, the number of data blocks belong-
ing to the mutually similar body of data also needs to be
delivered from the encoder 50 to the decoder 60.

Optionally, in the code table, there is beneficially
employed an insertion of one or more additional symbols
that have their own corresponding meaning. Typically, in big
code tables, an “escape” symbol beneficially has its own
code word. Moreover, there is beneficially also an own code
word available for “end of coeflicients” symbol in the coding
table that is used for DCT coefficients in JPEG. This means
that the method is already known to the decoder 60, such that
the method can be utilized in a very efficient manner by
adding new coding symbols that can be used, for example,
for “change of code table”, “end of data” and also for
“escape”, if it is needed. These additional symbols can be
generated so that their frequency is 1 every time when they
are to be used. If an available table is used, then a corre-
sponding identification is added as a symbol so that it splits
the code with one of the symbols that has the longest code
word. If there is data left, for example there is a new data
chunk after a current data chunk, the encoder 50 beneficially
uses a “change of coding table” symbol and not an “end of
data” symbol. When this “change of coding table” symbol is
delivered, an index of the new coding table is delivered after
it. The value of index defining the new coding table is, for
example, employed when there is no table available and
from 1 to amount of tables when there are already tables
available. Optionally, this index for the new coding table has
a value that uses as many bits as it is required to present all
the available or suitable tables for the data. If a value 0 is

US 9,729,169 B2

27

delivered as an index for the new coding table, then the
delivery of code table is needed before the next symbols are
encoded to a data stream provided from the encoder 50 to the
decoder 60. Otherwise, after the index identifying the new
coding table, new symbols can be immediately encoded
within this new coding table. When a last data chunk is
coded and a last data value is delivered to the decoder 60, the
encoder 50 delivers the “end of data” symbol. In this case,
only the “end of data” symbol is valid and “change of coding
table” is not used. When the “end of data” symbol is
delivered, there is no need to continue delivery of any data
thereafter. This “end of data” symbol enables there to be no
need to deliver the number of data values for each data
chunk. Moreover, neither the coding method is needed to be
delivered to the decoder 60, because only the used code
table, frequency table, probability table or lengths of code
words, is changed for different data chunks. Thus, the total
amount of overhead data to be sent from the encoder 50 to
the decoder 60 is quite small when the code table is changed
during the encoding and subsequent decoding of data. One
trailing bit is needed to detect if a symbol pertains to
“change of code table” or to “end of data”, or it is possible
to generate both symbols with frequency 1 to the code table.

Occasionally, it is beneficial to send the amount of data
values, the amount of encoded data or use the “end of data”
symbol depending on the data, the amount of data, used
coding method and implementation of decoder 60 and
encoder 50. Moreover, it is optionally beneficial to employ
parallelism when processing data in the encoder 50 and/or
decoder 60, namely the amount of coded data is delivered
and so the decoder 60 can easily split the data for different
processors, processes and threads. Typically, there is often a
variety of approaches that is best suited to deliver informa-
tion regarding how many data values need to be decoded
and, in such case, there is no need to deliver a corresponding
selection; however, when multiple best choices are avail-
able, the encoder 50 selects the method and delivers a
corresponding decision regarding a most suitable choice to
the decoder 60.

It will be appreciated from the foregoing, that the decoder
60 implements substantially an inverse of encoding func-
tions executed in the encoder 50, when the data D1 and the
data D3 are to be mutually substantially similar, for example
as illustrated in FIG. 3A. However, many practical situa-
tions, for example when multicasting the encoded data E2 to
a plurality of mutually different devices, require use of a
transcoder 70 to transcode the data D3 to generate corre-
sponding transcoded data D4 which is compatible with a
given device hosting the decoder 60 and its associated
transcoder 70, as illustrated in FIG. 3B Optionally, both the
decoder 60 and the transcoder 70 are implemented using
computing hardware; optionally, the transcoder 70 is imple-
mented in dedicated transcoding hardware, for example a
hardware dongle or similar. Embodiments of the present
disclosure are susceptible to being configured to provide
lossless or lossy encoding and decoding of data. Optionally,
the decoder 60 is also operable to perform transcoding, for
example providing data to a display device which is different
to that required to render the data (D1). In such a case, the
data processed through the codec 100 is never decoded back
to its original format. Instead, the encoded data E2 is, for
example, converted directly into some other format, in
which it would then be rendered, for example to a screen or
stored into a file. An example embodiment of such transcod-
ing is where the data D1 was originally in YUV format, and
then it is compressed and transmitted to a receiver; the
receiver recovers the data block-by-block, and performs

5

20

25

35

40

45

50

55

65

28

color conversion on it and scales it into an RGB image
suitable to be rendered on a screen, without even recon-
structing a full resolution YUV result image.

The decoder 60 is operable to employ a method of
decoding encoded data (E2) generated by the encoder 50, for
generating corresponding decoded data (D3), wherein the
method includes following steps of:

(i) receiving the encoded data (E2) and extracting there-
from one or more sets of indices, together with one or more
frequency tables, and/or one or more code tables, and/or one
or more length of code word tables, and/or one or more
probability tables, and/or information indicative of such one
or more tables;

(i) computing from the one or more sets of indices
corresponding symbols in one or more data chunks and/or
compressed symbols of entries in the one or more code
tables, and/or the one or more frequency tables, and/or the
one or more length of code word tables, and/or one or more
probability tables; and

(iii) regenerating from the symbols one or more data
chunks, using information from the one or more code tables,
and/or one or more frequency tables, and/or one or more
length of code word tables, and/or one or more probability
tables; and

(iv) combining and/or transforming the one or more data
chunks to generate the decoded data (D3).

Optionally, the method includes receiving at least one of
the one or more tables in a manner in which the at least one
of the one or more tables is storable for subsequent reuse.

Optionally, the method includes applying one or more
data decompression algorithms in step (iv) to generate the
decoded data (D3). More optionally, in the method, the one
or more data decompression algorithms include at least one
of: Huffman decoding, VLC decoding, entropy decoding,
Arithmetic decoding, Range decoding.

Optionally, the method includes combining a plurality of
the one or more data chunks to generate he decoded data
(D3) by employing a parallel architecture of processors for
processing the plurality of data chunks in a substantially
concurrent manner.

Optionally, the method includes generating the one or
more sets of indices based on multiple data values that are
combined together. More optionally, in the method, the
indices are derived from one or more RGB-pixels that
contain R, G and B pixel values or Y, U and V pixel values.
More optionally, the method includes switching dynamically
between generating the one or more data chunks either
unencoded or encoded into the encoded data (E2), as a
function of an achievable data decompression ratio for the
data chunks when included in the encoded data (E2).

Optionally, in the method, the decoder 60 is operable to
extract from the encoded data (E2) at least one trailing bit
which is indicative of if a symbol pertains to “change of
code table” or to “end of data”.

Optionally, the method includes generating a given data
chunk substantially from only enough indices required for
referencing to one or more symbols present in the given data
chunk.

Optionally, the method includes decompressing the one or
more code tables included in the encoded data (E2). More
optionally, the method includes decompressing the one or
more code tables by employing Huffman decoding. More
optionally, in the method, decompression of the one or more
code tables employs one or more subsidiary code tables.

US 9,729,169 B2

29

Optionally, the method includes receiving the one or more
code tables in manner which enables the one or more code
tables to be employed in the decoder (60) for decoding
subsequently sent data.

Optionally, the method includes extracting from the
encoded data (E2) one or more identification codes indicat-
ing from where the one or more code table are susceptible
to being accessed, via one or more databases, and/or one or
more proxy databases.

Optionally, the method includes decoding one or more of
following types of data: captured audio signals, captured
video signals, captured images, text data, seismographic
data, sensor signals, analog-to-digital (ADC) converted data,
biomedical signal data, calendar data, economic data, math-
ematical data, binary data.

Optionally, the method includes receiving the encoded
data (E2) from a plurality of data sources, and to combine
data provided from the sources to regenerate the encoded
data (E2).

The decoder 60 is operable to implement the aforemen-
tioned method of decoding the encoded data (E2) to generate
the decoded data (D3); there is provided a decoder 60 for
decoding the encoded data (E2) generated by the encoder 50,
wherein the decoder 60 is operable:

(1) to receive the encoded data (E2) and to extract there-
from one or more sets of indices, together with one or more
frequency tables, and/or one or more code tables, and/or one
or more length of code word tables, and/or one or more
probability tables, and/or information indicative of such one
or more tables;

(ii) to compute from the one or more sets of indices
corresponding symbols in one or more data chunks and/or
compressed symbols of entries in the one or more code
tables, and/or the one or more frequency tables, and/or the
one or more length of code word tables, and/or one or more
probability tables; and

(iii) to regenerate from the symbols one or more data
chunks, using information from the one or more code tables,
and/or one or more frequency tables, and/or one or more
length of code word tables, and/or one or more probability
tables; and

(iv) to combine and/or transform the one or more data
chunks to generate the decoded data (D3).

Optionally, the decoder 60 further includes a transcoder
70 for transcoding the decoded data (D3) to generate cor-
responding transcoded data (D4) and/or generating the cor-
responding transcoded data (D4) from the encoded data
(E2).

Optionally, the decoder 60 is operable to receive at least
one of the one or more tables in a manner in which the at
least one of the one or more tables is storable for subsequent
reuse.

Optionally, the decoder 60 is operable to apply one or
more data decompression algorithms in step (iv) to generate
the decoded data (D3). More optionally, in the decoder 60,
the one or more data decompression algorithms includes at
least one of: Huffman decoding, VL.C decoding, entropy
decoding, Arithmetic decoding, Range decoding.

Optionally, the decoder 60 is operable to combine a
plurality of the one or more data chunks to generate he
decoded data (D3) by employing a parallel architecture of
processors for processing the plurality of data chunks in a
substantially concurrent manner.

Optionally, the decoder 60 is operable to generate the one
or more sets of indices based on multiple data values that are
combined together. More optionally, in the decoder 60, the
indices are derived from one or more RGB-pixels that

20

25

30

35

40

45

50

55

60

65

30

contain R, G and B pixel values or Y, U and V pixel values.
More optionally, the decoder 60 is operable to switch
dynamically between generating the one or more data
chunks either unencoded or encoded into the encoded data
(E2), as a function of an achievable data decompression ratio
for the data chunks when included in the encoded data (E2).

Optionally, the decoder 60 is operable to extract from the
encoded data (E2) at least one trailing bit which is indicative
of if a symbol pertains to “change of code table” or to “end
of data”.

Optionally, the decoder 60 is operable to generate a given
data chunk substantially from only enough indices required
for referencing to one or more symbols present in the given
data chunk.

Optionally, the decoder 60 is operable to decompress the
one or more code tables included in the encoded data (E2).
More optionally, the decoder 60 is operable to decompress
the one or more code tables by employing Huffman decod-
ing. More optionally, in the decoder 60, decompression of
the one or more code tables employs one or more subsidiary
code tables.

Optionally, the decoder 60 is operable to receive the one
or more code tables in manner which enables the one or
more code tables to be employed in the decoder (60) for
decoding subsequently sent data.

Optionally, the decoder 60 is operable to extract from the
encoded data (E2) one or more identification codes indicat-
ing from where the one or more code table are susceptible
to being accessed, via one or more databases, and/or one or
more proxy databases.

Optionally, the decoder 60 is operable to decode one or
more of following types of data: captured audio signals,
captured video signals, captured images, text data, seismo-
graphic data, sensor signals, analog-to-digital (ADC) con-
verted data, biomedical signal data, calendar data, economic
data, mathematical data, binary data.

Optionally, the decoder 60 is operable to receive the
encoded data (E2) from a plurality of data sources, and to
combine data provided from the sources to regenerate the
encoded data (E2). For example, the plurality of sources are
included in a peer-to-peer data communication network
which communicates the encoded data (E2) from the
encoder 50 to the decoder 60.

Modifications to embodiments of the invention described
in the foregoing are possible without departing from the
scope of the invention as defined by the accompanying
claims. Expressions such as “including”, “comprising”,
“incorporating”, “consisting of, “have”, “is” used to
describe and claim the present invention are intended to be
construed in a non-exclusive manner, namely allowing for
items, components or elements not explicitly described also
to be present. Reference to the singular is also to be
construed to relate to the plural. Numerals included within
parentheses in the accompanying claims are intended to
assist understanding of the claims and should not be con-
strued in any way to limit subject matter claimed by these
claims.

We claim:

1. A method of encoding input data in an encoder to
generate corresponding encoded data, the method compris-
ing:

(a) analyzing symbols present in the input data and
splitting and/or transforming the input data into one or
more data chunks;

(b) generating as a function of occurrence of the symbols
at least one of: one or more code tables, one or more
frequency tables, one or more length of code word

US 9,729,169 B2

31

tables, one or more probability tables for the symbols
present in the one or more data chunks;

(c) computing one or more sets of indices relating the
symbols in each data chunk to entries in at least one of:
the one or more code tables, the one or more frequency
tables, the one or more length of code word tables, the
one or more probability tables;

(d) assembling information of the one or more sets of
indices relating the symbols in each data chunk,
together with at least one of: the one or more frequency
tables, the one or more code tables, the one or more
length of code word tables, the one or more probability
tables, information indicative of the one or more tables,
to the encoded data; and

(e) compressing the symbols within the one or more tables
to the encoded data.

2. The method as claimed in claim 1, wherein at least one

of the one or more tables is pre-defined.

3. The method as claimed in claim 1, wherein the method
includes delivering the encoded data containing the infor-
mation of the one or more sets of indices relating the
symbols in each data chunk, together with at least one of: the
one or more frequency tables, the one or more code tables,
the one or more length of code word tables, the one or more
probability tables, the information indicative of the one or
more tables as well as the compressed symbols.

4. The method as claimed in claim 1, wherein the method
includes generating the one or more tables for being regen-
erated during decoding based upon their symmetry and
corresponding symmetry-indicative information.

5. The method as claimed in claim 1, wherein the method
includes delivering at least one of the one or more tables in
a manner in which the at least one of the one or more tables
is storable for subsequent reuse.

6. The method as claimed in claim 1, wherein the infor-
mation of the one or more sets of indices includes:

(1) indices of the symbols that occur in the chunk as such,
and of which probability values are to be inserted into
the encoded data, preceded by a total count of indices
in the data chunk; or

(ii) bits expressing which symbols out of all possible
symbol values occur in the chunk and for which
symbols probability values are to be inserted into the
encoded data; or

(iii) information stating that starting from the beginning,
all symbol value probabilities to be inserted into the
encoded data, which in itself also expresses the count
of indices.

7. The method as claimed in claim 1, wherein the method
includes applying one or more data compression algorithms
in step (d) to generate the encoded data.

8. The method as claimed in claim 7, wherein the one or
more data compression algorithms include at least one of:
Huffman encoding, VLC, entropy encoding, Arithmetic
encoding, Range encoding.

9. The method as claimed in claim 1, wherein the method
includes splitting the input data into a plurality of data
chunks and employing a parallel architecture of processors
for processing the plurality of data chunks in a substantially
concurrent manner.

10. The method as claimed in claim 1, wherein the method
includes generating the one or more sets of indices based on
multiple data values that are combined together.

11. The method as claimed in claim 10, wherein the
indices are derived from one or more RGB-pixels or YUV
pixels that contain R, G and B pixel values or Y, U and V
pixel values.

20

25

30

35

40

45

50

65

32

12. The method as claimed in claim 10, wherein the
method includes dynamically switching between assembling
the data chunks either unencoded or encoded into the
encoded data, as a function of an achievable data compres-
sion ratio for the data chunks when included in the encoded
data.

13. The method as claimed in claim 1, wherein the method
includes incorporating into the encoded data at least one
trailing bit to indicate if a symbol pertains to “change of
code table” or to “end of data”.

14. The method as claimed in claim 1, wherein the method
includes generating for a given data chunk substantially only
enough indices required for referencing to one or more
symbols present in the given data chunk.

15. The method as claimed in claim 1, wherein the method
further includes compressing the one or more code tables for
inclusion in the encoded data.

16. The method as claimed in claim 15, wherein the one
or more code tables are compressed by employing Huffman
coding.

17. The method as claimed in claim 15, wherein com-
pression of the one or more code tables employs one or more
subsidiary code tables.

18. The method as claimed in claim 1, wherein that the
method includes communicating the one or more code tables
in a manner which enables the one or more code tables to be
employed in a decoder for decoding subsequently sent data.

19. The method as claimed in claim 1, wherein that the
method includes a step of including in the encoded data one
or more identification codes indicating from where the one
or more code table are susceptible to being accessed, via one
or more databases, and/or one or more proxy databases.

20. The method as claimed in claim 1, wherein the method
is arranged to encode one or more of following types of data:
captured audio signals, captured video signals, captured
images, text data, seismographic data, sensor signals, ana-
log-to-digital (ADC) converted data, biomedical signal data,
calendar data, economic data, mathematical data, binary
data.

21. The method as claimed in claim 1, wherein the method
includes:

(i) receiving the encoded data and extracting therefrom
information of one or more sets of indices, together
with at least one of: one or more frequency tables, one
or more code tables, one or more length of code word
tables, one or more probability tables, information
indicative of the one or more tables;

(i) computing from the one or more sets of indices
corresponding symbols in at least one of: one or more
data chunks, compressed symbols of entries in the one
or more code tables, the one or more frequency tables,
the one or more length of code word tables, the one or
more probability tables;

(iii) regenerating from the symbols one or more data
chunks, using information from at least one of: the one
or more code tables, the one or more frequency tables,
the one or more length of code word tables, the one or
more probability tables; and

(iv) combining and/or transforming the one or more data
chunks to generate the decoded data.

22. The method as claimed in claim 21, wherein at least

one of the one or more tables is pre-defined.

23. The method as claimed in claim 21, wherein the
method includes transcoding the decoded data to generate
corresponding transcoded data and/or generating the corre-
sponding transcoded data from the encoded data.

US 9,729,169 B2

33

24. The method as claimed in claim 21, wherein the
method includes regenerating the one or more tables based
upon their symmetry and corresponding symmetry-indica-
tive information.

25. The method as claimed in claim 21, wherein the
method includes receiving at least one of the one or more
tables in a manner in which the at least one of the one or
more tables is storable for subsequent reuse.

26. The method as claimed in claim 21, wherein the
method includes applying one or more data decompression
algorithms in step (iv) to generate the decoded data.

27. The method as claimed in claim 26, wherein the one
or more data decompression algorithms include at least one
of: Huffman decoding, VLC decoding, entropy decoding,
Arithmetic decoding, Range decoding.

28. The method as claimed in claim 21, wherein the
method includes combining a plurality of the one or more
data chunks to generate the decoded data by employing a
parallel architecture of processors for processing the plural-
ity of data chunks in a substantially concurrent manner.

29. The method as claimed in claim 21, wherein the
method includes generating the one or more sets of indices
based on multiple data values that are combined together.

30. The method as claimed in claim 29, wherein the
indices are derived from one or more RGB-pixels or YUV-
pixels that contain R, G and B pixel values or Y, U and V
pixel values.

31. The method as claimed in claim 29, wherein the
method includes switching dynamically between generating
the one or more data chunks either unencoded or encoded
into the encoded data, as a function of an achievable data
decompression ratio for the data chunks when included in
the encoded data.

32. The method as claimed in claim 21, wherein the
decoder is operable to extract from the encoded data at least
one trailing bit which is indicative of if a symbol pertains to
“change of code table” or to “end of data”.

33. The method as claimed in any one or claim 21,
wherein the method includes generating a given data chunk
substantially from only enough indices required for refer-
encing to one or more symbols present in the given data
chunk.

34. The method as claimed in claim 21, wherein the
method includes decompressing the one or more code tables
included in the encoded data.

35. The method as claimed in claim 34, wherein the
method includes decompressing the one or more code tables
by employing Huffman decoding.

36. The method as claimed in claim 34, wherein decom-
pression of the one or more code tables employs one or more
subsidiary code tables.

37. The method as claimed in claim 21, wherein the
method includes receiving the one or more code tables in a
manner which enables the one or more code tables to be
employed in the decoder for decoding subsequently sent
data.

38. The method as claimed in claim 21, wherein the
method includes extracting from the encoded data one or
more identification codes indicating from where the one or
more code table are susceptible to being accessed, via one or
more databases, and/or one or more proxy databases.

39. The method as claimed in claim 21, wherein the
method includes decoding one or more of following types of
data: captured audio signals, captured video signals, cap-
tured images, text data, seismographic data, sensor signals,

20

25

40

45

55

60

65

34

analog-to-digital (ADC) converted data, biomedical signal
data, calendar data, economic data, mathematical data,
binary data.

40. The method as claimed in claim 21, wherein the
method includes receiving the encoded data from a plurality
of data sources, and to combine data provided from the
sources to regenerate the encoded data.

41. A computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising processing hardware to execute a method
comprising:

(a) analyzing symbols present in the input data and
splitting and/or transforming the input data into one or
more data chunks;

(b) generating as a function of occurrence of the symbols
at least one of: one or more code tables, one or more
frequency tables, one or more length of code word
tables, one or more probability tables for the symbols
present in the one or more data chunks;

(c) computing one or more sets of indices relating the
symbols in each data chunk to entries in at least one of:
the one or more code tables, the one or more frequency
tables, the one or more length of code word tables, the
one or more probability tables;

(d) assembling information of the one or more sets of
indices relating the symbols in each data chunk,
together with at least one of’ the one or more frequency
tables, the one or more code tables, the one or more
length of code word tables, the one or more probability
tables, information indicative of the one or more tables,
to the encoded data; and

(e) compressing the symbols within the one or more tables
to the encoded data.

42. An encoder for encoding input data to generate

corresponding encoded data, the method comprising:

(a) an analyzer for analyzing symbols present in the input
data, and for splitting and/or transforming the input
data into one or more data chunks;

(b) a generator for generating, as a function of occurrence
of the symbols at least one of: one or more code tables,
one or more frequency tables, one or more length of
code word tables, one or more probability tables for the
symbols present in the one or more data chunks;

(c) a computing engine for computing one or more sets of
indices relating the symbols in each data chunk to
entries in at least one of: the one or more code tables,
the one or more frequency tables, the one or more
length of code word tables, the one more probability
tables;

(d) a data assembler for assembling information of the one
or more sets of indices relating the symbols in each data
chunk, together with at least one of: the one or more
frequency tables, the one or more code tables, the one
or more length of code word tables, the one or more
probability tables information indicative of the one or
more tables, to the encoded data; and

(e) a compressor for compressing the symbols within the
one or more tables to the encoded data.

43. An encoder as claimed in claim 42, wherein the
encoder is operable to deliver the encoded data containing
the information of the one or more sets of indices relating the
symbols in each data chunk, together with at least one of: the
one or more frequency tables, the one or more code tables,
the one or more length of code word tables, the one or more

US 9,729,169 B2

35

probability tables, the information indicative of the one or
more tables as well as the compressed symbols.

44. An encoder as claimed in claim 43, wherein the
encoder is operable to deliver at least one of the one or more
tables in a manner in which the at least one of the one or
more tables is storable for subsequent reuse.

45. The encoder as claimed in claim 42, wherein the
encoder is operable to apply one or more data compression
algorithms in the data assembler to generate the encoded
data.

46. The encoder as claimed in claim 45, wherein the one
or more data compression algorithms include at least one of:
Huffman encoding, VLC, entropy encoding, Arithmetic
encoding, Range encoding.

47. The encoder as claimed in claim 42, wherein the
encoder is operable to split the input data into a plurality of
data chunks and to employ a parallel architecture of pro-
cessors for processing the plurality of data chunks in a
substantially concurrent manner.

48. The encoder as claimed in claim 42, wherein the
generator is operable to generate the one or more sets of
indices based on multiple data values that are combined
together.

49. The encoder as claimed in claim 48, wherein the
indices are derived from one or more RGB-pixels or YUV-
pixels that contain R, G and B pixel values or Y, U and V
pixel values.

50. The encoder as claimed in claim 49, wherein the
encoder is operable to switch dynamically between assem-
bling the data chunks either unencoded or encoded into the
encoded data, as a function of an achievable data compres-
sion ratio (achievable) for the data chunks when included in
the encoded data.

51. The encoder as claimed in claim 42, wherein the
encoder is operable to incorporate into the encoded data at
least one trailing bit to indicate if a symbol pertains to
“change of code table” or to “end of data”.

52. The encoder as claimed in claim 42, wherein the
generator is operable to generate for a given data chunk
substantially only enough indices required for referencing to
one or more symbols present in the given data chunk.

53. The encoder as claimed in claim 42, further compris-
ing a decoder that is operable:

(1) to receive the encoded data and to extract therefrom
information of one or more sets of indices, together
with at least one of: one or more frequency tables, one
or more code tables, one or more length of code word
tables, one or more probability tables, information
indicative of the one or more tables;

(ii) to compute from the one or more sets of indices
corresponding symbols in at least one of: one or more
data chunks, compressed symbols of entries in the one
or more code tables, the one or more frequency tables,
the one or more length of code word tables, the one or
more probability tables;

(iii) to regenerate from the symbols one or more data
chunks, using information from at least one of: the one
or more code tables, the one or more frequency tables,
the one or more length of code word tables, the one or
more probability tables; and

(iv) to combine and/or transform the one or more data
chunks to generate the decoded data.

54. The decoder as claimed in claim 53, wherein the
decoder further includes a transcoder for transcoding the
decoded data to generate corresponding transcoded data
and/or generating the corresponding transcoded data from
the encoded data.

20

25

30

35

40

45

50

55

60

65

36

55. The decoder as claimed in claim 53, wherein the
decoder is operable to regenerate the one or more tables
based upon their symmetry and corresponding symmetry-
indicative information provided to the decoder.

56. The decoder as claimed in claim 53, wherein the
decoder is operable to receive at least one of the one or more
tables in a manner in which the at least one of the one or
more tables is storable for subsequent reuse.

57. The decoder as claimed in claim 53, wherein the
decoder is operable to apply one or more data decompres-
sion algorithms in (iv) to generate the decoded data.

58. The decoder as claimed in claim 57, wherein the one
or more data decompression algorithms include at least one
of: Huffman decoding, VLC decoding, entropy decoding,
Arithmetic decoding, Range decoding.

59. The decoder as claimed in claim 53, wherein the
decoder is operable to combine a plurality of the one or more
data chunks to generate the decoded data by employing a
parallel architecture of processors for processing the plural-
ity of data chunks in a substantially concurrent manner.

60. The decoder as claimed in claim 53, wherein the
decoder is operable to generate the one or more sets of
indices based on multiple data values that are combined
together.

61. The decoder as claimed in claim 60, wherein the
indices are derived from one or more RGB-pixels or YUV-
pixels that contain R, G and B pixel values or Y, U and V
pixel values.

62. The decoder as claimed in claim 60, wherein the
decoder is operable to switch dynamically between gener-
ating the one or more data chunks either unencoded or
encoded into the encoded data, as a function of an achiev-
able data decompression ratio for the data chunks when
included in the encoded data.

63. The decoder as claimed in claim 53, wherein the
decoder is operable to extract from the encoded data at least
one trailing bit which is indicative of if a symbol pertains to
“change of code table” or to “end of data”.

64. The decoder as claimed in claim 53, wherein the
decoder is operable to generate a given data chunk substan-
tially from only enough indices required for referencing to
one or more symbols present in the given data chunk.

65. The decoder as claimed in claim 53, wherein the
decoder is operable to decompress the one or more code
tables included in the encoded data.

66. The decoder as claimed in claim 65, wherein the
decoder is operable to decompress the one or more code
tables by employing Huffman decoding.

67. The decoder as claimed in claim 65, wherein decom-
pression of the one or more code tables employs one or more
subsidiary code tables.

68. The decoder as claimed in claim 53, wherein the
decoder is operable to receive the one or more code tables
in a manner which enables the one or more code tables to be
employed in the decoder for decoding subsequently sent
data.

69. The decoder as claimed in claim 53, wherein the
decoder is operable to extract from the encoded data one or
more identification codes indicating from where the one or
more code table are susceptible to being accessed, via one or
more databases, and/or one or more proxy databases.

70. The decoder as claimed in claim 53, wherein the
decoder is operable to decode one or more of following
types of data: captured audio signals, captured video signals,
captured images, text data, seismographic data, sensor sig-

US 9,729,169 B2

37

nals, analog-to-digital (ADC) converted data, biomedical
signal data, calendar data, economic data, mathematical
data, binary data.

71. The decoder as claimed in claim 53, wherein the
decoder is operable to receive the encoded data from a
plurality of data sources, and to combine data provided from
the sources to regenerate the encoded data.

72. The encoder as claimed in claim 53, wherein a codec
includes the at least one encoder for encoding input data to
generate corresponding encoded data, and the at least one
decoder for decoding the encoded data to generate decoded
output data.

73. The codec as claimed in claim 72, wherein the at least
one encoder and the at least one decoder are mutually
spatially remote and mutually coupled together via a data
communication network.

74. The codec as claimed in claim 72, wherein the data
communication network is configured in a manner of a
peer-to-peer communication network.

75. The codec as claimed in claim 72, wherein the encoder
and the decoder are symmetrical in their processing of data
therethrough.

20

38

