wo 2017/036606 A1 || J1 ¥ 1 00O 0 0 OO A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/036606 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

9 March 2017 (09.03.2017) WIPOIPCT
International Patent Classification:
GO6F 3/06 (2006.01)
International Application Number:
PCT/EP2016/025095

International Filing Date:
5 September 2016 (05.09.2016)

Filing Language: English
Publication Language: English
Priority Data:

1515658.1 3 September 2015 (03.09.2015) GB

Applicant: GURULOGIC MICROSYSTEMS OY
[FUFI]; Linnanakatu 34, Turku 20100 (FI).

Inventors: KARKKAINEN, Tuomas; Rautalankatu 2
B17, Turku 20320 (FI). KALEVO, Ossi; Ketunhinti 1,
Akaa 37800 (FI).

Agent: NORRIS, Timothy, Sweyn; Basck LTD, 16 Saxon
Road, Cambridge CB5 8HS (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: METHOD OF OPERATING DATA MEMORY AND DEVICE UTILIZING METHOD

(57) Abstract: A device (10) includes a data memory (40) that is managed
by a filing system (200) that is operable to store data (110) in respect of one
6 or more clusters or blocks (100) within the data memory (40). Moreover, the

50
A/
11
-
B=
20

FIG. 1

device (10) is operable: (a) to assemble together a plurality of data content
objects (110, 60) into a virtual container (150); (b) to store the virtual con-
tainer (150) and its associated data content objects (110, 60) into one or
more of the one or more clusters or blocks (100), wherein the data content
objects (110, 60) are memory -aligned within the one or more clusters or
blocks; and (c) to arrange for the data content objects to be individually ac-
cessible in their virtual container (150).

WO 2017/036606 A1 |IIIIWAL 00N 000 ERRRAC Y NER OO

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — with international search report (Art. 21(3))

— of inventorship (Rule 4.17(iv))

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095

METHOD OF OPERATING DATA MEMORY AND DEVICE UTILIZING
METHOD

Technical Field

The present disclosure relates to methods of operating data memory, and also to
devices which utilize the methods. Moreover, the present disclosure is concerned
with computer program products comprising a non-transitory computer-readable
storage medium having computer-readable instructions stored thereon, the
computer-readable instructions being executable by a computerized device

comprising processing hardware to execute aforesaid methods.

Background

Conventionally, portable electronic devices including one or more processors,
data memory and a graphical user interface (GUI), for example games terminals
and smart phones, employ icons to represent different functional options that are
available to a user. Such icons, by way of their visual appearance, identify their
corresponding functions. For example, the icons correspond to software
applications, namely “Apps’, which have been downloaded to the portable

electronic devices.

A term "slack space” has commonly been used to refer to an unused memory
space caused by files that are smaller than a cluster (namely a “data cluster”) or
a block (namely a block as a physical record) determined in a file system of the
aforementioned portable electronic devices; the file system is operable to store
software applications in the clusters, allocating a cluster per software application,
wherein the software application has a size that is often considerably smaller
than the size of a cluster. Such slack space as a technical problem has however
not been considered to be bad enough to warrant changes, because the average
file size in such a file system has been considerably larger, and the price of non-
volatile memory has previously not been significant in the production costs of the
portable electronic devices. However, recently, the situation has changed as
regards integrated systems and new non-mechanical, electrically-addressed ROM
memories that are considerably more expensive than mechanically-addressed

memories. Therefore, the technical problem has not been recognized earlier and

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095

thus there has hitherto been no need to find a technical solution for the technical
problem. Moreover, along with the development of better compression methods,
such as proprietary GMVC® associated with Gurulogic Microsystems Oy, Finland,
the file sizes have become increasingly smaller, which in turn has increased the
slack space, for example as aforementioned wherein a compressed software
application is considerably smaller in size than a cluster. Thus, there is an

increased need to address such inefficiencies related to storage of data.

Gurulogic Microsystems®, namely a trademark of Gurulogic Microsystems Oy,
Finland has previously invented a method of communicating data, as described in
a published patent application GB 1504336.7, reference [3], namely “Method of
Communicating Data Packets within Data Communication Systems”; the method
produces optimal data packets for transfer in networks and file systems, thereby
achieving a very cost-efficient data transfer mechanism that yields an almost
theoretically maximal transfer capacity of information. It is used to combine
different types of data together based upon their priorities, and it offers a better
user experience than known prior art techniques, especially when employed in

interactive communication systems.

Another known example of data compression concerns archives such as TAR or
ZIP; TAR and ZIP are both able to archive, and if necessary to compress, a large
number of files into one physical file that thus comprises an optimal data
container; however, there is a technical disadvantage that files inside the archive
cannot be used individually, directly without extracting the files physically into

another location.

It is previously known that contemporary database systems such as Oracle, MS-
SQL, MySQL and MariaDB function as highly advanced and optimal data
containers; “Oracle” is a registered trademark. It is also known that their
technical implementation enables a cost-efficient solution to be achieved;
databases store files in the binary (BLOB) format into a database table, that

usually together comprise a large physical file.

One example of such is the software application Dropbox, which integrates itself

into an existing file system, thereby enabling use of files directly as if they would

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-3-

physically exist in the existing file system; “Dropbox” is a registered trademark.
Such an approach enables an optimized data container to be achieved, except
that a Dropbox-style service operates in a computing cloud environment, and is
not suitable for use in a local manner in portable electronic devices. “Cloud”
refers to data storage capacity available in a data communication network, for
example in the contemporary Internet, even if users are unaware precisely
where in the data communication network their data is stored; such cloud-based
data storage wusually occurs at one or more servers located in the data

communication network.

Another known virtual file system based on use of a single file, described in
reference [7], operates by having its files located in a virtual drive, wherein the
files are directly usable individually without extraction or any additional copying
into a physical location. However, even the virtual file systems are formatted into
clusters (data clusters) or blocks (blocks as physical record) of pre-determined
fixed size, and thus they still cause a slack space problem that is described and

addressed in the present disclosure.

When a portable electronic device employs clusters as a minimum file system
storage unit, use of sophisticated optimized data compression results in data, for
example corresponding to graphical user interface (GUI) icons, employing even
less space in memory, resulting in use of the clusters of the file system being

even more inefficient.

It will be appreciated that files that are larger than the size of a cluster (data
cluster) or block (block as physical record) used in the given data filing system
cause slack space, because the actual content of a given file is rarely equal to the
last cluster (data cluster) or block (block as physical record) reserved for the
given file; in other words, files that are larger than the size of a cluster are rarely
precisely of a size which is exactly an integer multiple of the size of the cluster.
However, the more clusters (data clusters) or blocks (blocks as physical record)
that are present in the file, the relatively less physical slack space is created in

the data filing system when storing data therein.

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095

Various known methods of storing data into data memory, and subsequently
accessing the stored data, are described in following published patent application
documents:

US2011/0035557 A1 (Luukkainen et al.);

US2011/0040795 A1 (Gordon et al.);

US02013/0111182 A1 (Aslot et al.);

US2009/0112951 A1 (Ryu et al.);

US2011/0106806 A1 (Tamas et al.); and

US2005/0160309 A1 (Golding et al.).

Summary

The present disclosure seeks to provide a more efficient method of storing data,
for example data content objects, in data memory that is managed by a filing

system as clusters or blocks.

The data content objects are beneficially icons representing different functional
options, for example in a portable electronic device, but could also be other types
of data such as data files, text data, audio data, image data, binary data and

measurement data.

Moreover, the present disclosure seeks to provide an electronic device, for
example a portable electronic device, that is operable to employ more efficient
data storage, for example more efficient data storage of data content objects, in

data memory that is managed by a filing system as clusters or blocks.

According to a first aspect, there is provided a method of operating a data

memory of a device that is managed by a filing system that is operable to store

data in respect of one or more clusters or blocks within the data memory,

characterized in that the method includes:

(a) assembling together a plurality of data content objects into a virtual
container;

(b) storing the virtual container and its associated data content objects into

one or more of the one or more clusters or blocks, wherein the data

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-5-

content objects are memory-aligned within the one or more clusters or
blocks; and
(c) arranging for the data content objects to be individually accessible in their

virtual container.

The present invention is of advantage in that there is provided a novel way of
storing files into memory in an optimal format, for example, that is memory-
aligned, thus enabling near-maximal utilization of a theoretical memory capacity
of data storage memory, independently on which particular type of file system is

used for managing the data storage memory.

Optionally, the method includes selectively accessing one or more of the plurality

of data content objects from the virtual container stored within the data memory.

Optionally, in the method, the plurality of data content objects have mutually

different file formats.

Optionally, the method includes transcoding one or more of the data content
objects when storing and/or accessing them from their virtual container stored in
the data memory. Transcoding involves changing a structure and/or a format of

given data, for example.

Optionally, the method includes compressing, encrypting, decompressing or
decrypting one or more of the data content objects when storing and/or

accessing them from their virtual container stored in the data memory.

Optionally, the method includes arranging for at least one of the plurality of data
content objects to include a link to an external database relative to the data

memory.

Optionally, in the method, the plurality of data content objects corresponds to
data for generating one or more icons for presentation via a graphical user
interface (GUI).

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-6 -

According to a second aspect, there is provided a device including a data
memory that is managed by a filing system that is operable to store data in
respect of one or more clusters or blocks within the data memory, characterized
in that the device is operable:

(a) to assemble together a plurality of data content objects into a virtual
container;

(b) to store the virtual container and its associated data content objects into
one or more of the one or more clusters or blocks, wherein the data
content objects are memory-aligned within the one or more clusters or
blocks; and

(c) to arrange for the data content objects to be individually accessible in their

virtual container.

Optionally, the device is operable selectively to access one or more of the
plurality of data content objects from the virtual container stored within the data

memory.

Optionally, when the device is in operation, the plurality of data content objects

have mutually different file formats.

Optionally, the device is operable to transcode one or more of the data content
objects when storing and/or accessing them from their virtual container stored in

the data memory.

Optionally, the device is operable to compress, encrypt, decompress or decrypt
one or more of the data content objects when storing and/or accessing them

from their virtual container stored in the data memory.

Optionally, the device is operable to arrange for at least one of the plurality of
data content objects to include a link to an external database relative to the data

memory.

Optionally, when the device is in operation, the plurality of data content objects
corresponds to data for generating one or more icons for presentation via a

graphical user interface (GUI) of the device.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095

According to a third aspect, there is provided a computer program product
comprising a non-transitory computer-readable storage medium having
computer-readable instructions stored thereon, the computer-readable
instructions being executable by a computerized device comprising processing

hardware to execute a method pursuant to the first aspect.

It will be appreciated that features of embodiments of the disclosure are
susceptible to being combined in various combinations without departing from

the scope of the invention as defined by the appended claims.

Description of the diagrams

Embodiments of the present disclosure will now be described, by way of example

only, with reference to the following diagrams wherein:

FIG. 1 is a schematic illustration of a portable electronic device that is
operable to access its data memory pursuant to methods of the present
disclosure, wherein the data memory is organized by its filing system in
clusters or blocks;

FIG. 2 is an illustration of data content object storage in clusters of a known
data memory;

FIG. 3A is an illustration of data content object storage in virtual containers
pursuant to an embodiment of the present disclosure;

FIG. 3B is an illustration of data content object storage that contains several
portions of data inside one cluster in virtual containers pursuant to an
embodiment of the present disclosure; the limits of the clusters are not
crossed by one portion of data, unless the size of that particular portion
of data is not itself larger than the cluster;

FIG. 3C is an illustration of data content object storage that contains several
portions of data inside one cluster in virtual containers pursuant to an
embodiment of the present disclosure; the limits of the clusters are not
crossed by one portion of data unless the size of that particular portion
of data is not itself larger than the cluster where it is stored; FIG. 3C
differs from FIG. 3B by having the portions of data aligned not with
byte precision, but instead with alignment precision, so that the

memory addresses are, for example, 4-byte aligned, 8-byte aligned or

5

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095

FIG 3D

FIG 3E

FIG. 3F

FIG. 3G

FIG. 3H

FIG. 3l

FIG. 4

-8-

16-byte aligned, which is capable of optimizing an associated
management portion (for example, such alignment precision
corresponds to a precisions of a plurality of a relatively small number of
bytes, for example in a range of 4 to 16 bytes);

is an illustration of a manner in which other files can be added to a last
cluster, in addition to end portions of large files;

is an illustration of data content object storage that contains several
portions of data inside one cluster in virtual containers pursuant to an
embodiment of the present disclosure; FIG 3E depicts a manner in
which an end portion of one large file has been moved into a same
cluster with an end portion of another large file. Alternatively, small
files can be used instead of the end portions of large files to fill the
cluster;

is an illustration of data content object storage where there are several
smaller clusters with room enough for one or more portions of data and
also larger clusters for larger portions of data; there is illustrated a
manner in which one large cluster can be divided hierarchically, for
example into four smaller clusters, that can then be divided further into
smaller clusters.

is an illustration of data content object storage that contains several
portions of data inside clusters; FIG 3G presents a situation wherein
several large and small image files have been inserted into clusters; a
lot of empty space remains in some clusters, whereas some files do not
fit into one cluster;

is an illustration of a manner in which the same files that are illustrated
in FIG. 3G have been compressed and inserted into three clusters so
that the first cluster contains small files and a large file that begins in
the second cluster continues into the next cluster;

is an illustration of the same files and clusters as illustrated in FIG. 3H,
but in FIG. 31, a file ‘car.gmvc’ is currently being read;

is an illustration of implementing an additional filing system hierarchy
for achieving storage of a plurality of data content objects in an
efficient manner in data memory that is organized as clusters or blocks,

for example clusters or blocks of fixed pre-determined size;

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-9-

FIG. 5A is an illustration of an embodiment pursuant to the disclosure, namely
a virtual filing system pursuant to the disclosure, implemented by using
FUSE, wherein a virtual file system SZIPFS is operable to function in
user space; and

FIG. 5B is an illustration of an embodiment pursuant to the disclosure, namely
a virtual file system implemented as an independent filing system,

wherein the virtual file system SZIPFS is located in kernel space.

It will appreciated that aligning the portions of data by alignment precision
instead of byte precision can be used in all embodiments of the present
disclosure. The term “alignment” as used within the present disclosure indicates
that the data content objects inside clusters are memory-aligned so that their
memory addresses are n-byte aligned, where n is a power of two, namely 2".
Therefore, the magnitude of the alignments is a few bytes. The term alignment

in this application does not refer to alignment of cluster sizes.

In the accompanying diagrams, an underlined number is employed to represent
an item over which the underlined number is positioned or an item to which the
underlined number is adjacent. A non-underlined number relates to an item
identified by a line linking the non-underlined number to the item. When a
number is non-underlined and accompanied by an associated arrow, the non-
underlined number is used to identify a general item at which the arrow is

pointing.

Description of embodiments of the invention

In overview, according to a first aspect, there is provided a method of operating
a data memory of a device that is managed by a filing system that is operable to
store data in respect of one or more clusters or blocks within the data memory,
characterized in that the method includes:

(a) assembling together a plurality of data content objects into a virtual

container;
(b) storing the virtual container and its associated data content objects into

one or more of the one or more clusters or blocks, wherein the data

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-10 -

content objects are memory-aligned within the one or more clusters or
blocks; and
(c) arranging for the data content objects to be individually accessible (for

example individually accessed) in their virtual container.

Optionally, the method includes selectively accessing one or more of the plurality

of data content objects from the virtual container stored within the data memory.

Optionally, in the method, the plurality of data content objects have mutually

different file formats.

Optionally, the method includes transcoding one or more of the data content
objects when storing and/or accessing them from their virtual container stored in

the data memory.

Optionally, the method includes compressing, encrypting, decompressing or
decrypting one or more of the data content objects when storing and/or

accessing them from their virtual container stored in the data memory.

Optionally, the method includes arranging for at least one of the plurality of data
content objects to include a link to an external database relative to the data

memory.

Optionally, in the method, the plurality of data content objects corresponds to
data for generating one or more icons for presentation via a graphical user

interface (GUI).

According to a second aspect, there is provided a device including a data

memory that is managed by a filing system that is operable to store data in

respect of one or more clusters or blocks within the data memory, characterized

in that the device is operable:

(a) to assemble together a plurality of data content objects into a virtual
container;

(b) to store the virtual container and its associated data content objects into

one or more of the one or more clusters or blocks, wherein the data

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-119 -

content objects are memory-aligned within the one or more clusters or
blocks; and
(c) to arrange for the data content objects to be individually accessible (for

example, individually accessed) in their virtual container.

Optionally, the device is operable selectively to access one or more of the
plurality of data content objects from the virtual container stored within the data

memory.

Optionally, when the device is in operation, the plurality of data content objects

have mutually different file formats.

Optionally, the device is operable to transcode one or more of the data content
objects when storing and/or accessing them from their virtual container stored in

the data memory.

Optionally, the device is operable to compress, encrypt, decompress or decrypt
one or more of the data content objects when storing and/or accessing them

from their virtual container stored in the data memory.

Optionally, the device is operable to arrange for at least one of the plurality of
data content objects to include a link to an external database relative to the data

memory.

Optionally, when the device is in operation, the plurality of data content objects
corresponds to data for generating one or more icons for presentation via a

graphical user interface (GUI) of the device.

According to a third aspect, there is provided a computer program product
comprising a non-transitory computer-readable storage medium having
computer-readable instructions stored thereon, the computer-readable
instructions being executable by a computerized device comprising processing

hardware to execute a method pursuant to the first aspect.

10

15

WO 2017/036606

When describing embodiments of the present

PCT/EP2016/025095
-12-

disclosure in the following,

abbreviations are employed as provided in Table 1:

Table 1: details of acronyms employed to describe embodiments

Acronym Detail

Block A physical record, the smallest logical amount of disk space that
can be allocated to hold a file.

Cluster A data cluster is the smallest logical amount of disk space that
can be allocated to hold a file.

NFS Network File System.

NVM Non-volatile memory: computer memory that can retrieve stored
information even after having been power cycled (turned off and
back on), e.g. hard disk, magnetic tapes, etc.

RAM Random Access Memory

ROM Read Only Memory

Slack space | Wasted disk space (for example, unused disk space).

SSD Solid State Drive: a solid-state storage device that uses
integrated circuit assemblies as memory to store data
persistently.

VFS Virtual File System.

SZIP Starzip image file.

In overview, embodiments of the present disclosure are suitable, for example, in

fields of utilization, namely “ecosystems”, of the mobile devices and
corresponding embedded devices. These ecosystems and their corresponding
devices comprise, or depend upon, a considerable amount of files whose size is
smaller than a pre-defined fixed-size cluster, namely “data cluster”’, or block,
namely “block as physical record”. The embodiments of the present disclosure
also apply to “block devices”, namely where data memory is managed in terms

of data blocks.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-13 -

The methods described in respect of embodiments of the present disclosure
make it possible to store and include considerably more files than known, namely
“prior art”, systems are capable of accommodating. Moreover, embodiments of
the present disclosure make it possible for device manufacturers to produce

more competitive, cheaper and more cost-efficient hardware.

Embodiments of the present disclosure are capable of achieving a maximal cost-
efficiency in data storage capacity, especially regarding small files that are
smaller in size than a cluster (data cluster) or block (block as physical record)
defined in a file system. Thus, the embodiments of the present disclosure are
capable of saving considerable amounts of physical memory, namely a
performance characteristic that can be important in aforementioned ecosystems

and in embedded systems.

Moreover, the present disclosure provides a method of storing data which
enables a user to achieve more efficient content compression and encryption
and, if necessary, backup copying, for example into another file system or into a
centralized data-storage cloud. Therefore, a decoder integrated in a data storage
system pursuant to the present disclosure is able to decompress the contents of
a file for the user, even if the file were compressed and encrypted. An encoder
integrated in the aforementioned data storage system enables transcoding a file
from one format into another; namely, a file system in a digital “ecosystem” can
then request, for example, a .bmp image file in the .png format, in which case
the file is decoded from its original format and re-encoded into the format

indicated by a file extension of a link.

Embodiments of the present disclosure can be implemented so that they are
compatible with a file system that is most commonly used in ecosystem, thereby
not endangering data security in the system and not interfering with its

associated user permissions.

Embodiments of the present disclosure differ from known prior art systems in
that they are capable of using a file in a more optimized fashion, for example
improved fashion, directly from an optimized data container that is located in a

same physical non-volatile memory, thus not needing to make changes into

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-14 -

programs or scripts that use the file; such optimization is advantageously utilized
in a portable electronic device including therein data memory, wherein data

stored in the data memory is utilized by the device when in operation.

Embodiments of the present disclosure are technically different from known
systems of file management for portable electronic devices. For example, in
reference [3], there are produced tailored optimal-sized sequences of data that
are incorporated into fixed-sized packets according to their priority and based
upon their data format, thereby preventing occurrence of wasted space in the
data packets being produced. In contradistinction, embodiments of the present
disclosure focus instead on content which has an actual size that is a lot smaller,
for example less than 50%, more optionally less than 25%, than the size of a
cluster (data cluster) or block (block as physical record) used in a given
particular file system, wherein such content contemporarily results in slack
memory space, namely in an inefficient use of memory capacity. Embodiments of
the present disclosure are not dependent upon priorities of data, and thus the
embodiments of the present disclosure are capable of combining all mutually
different kinds of data together. Of course, optionally, embodiments of the
present disclosure can still also utilize priorities or assemble similar data contents
together as well. Optionally, the embodiments can utilize the knowledge on how

often the files are needed, namely how often they are read from memory.

Embodiments of the present disclosure address a technical problem of inefficient
utilization of precious data memory in such situations, where the “ecosystems”
provided by device manufacturers are based on known prior art data filing
systems and are used so as to maintain compatibility of applications. In these
known prior art file systems, the files are stored into one or more pre-formatted
fixed-size clusters (data clusters) or blocks (blocks as physical record), thereby
enabling a fairly capable and cost-efficient data filing system for reading and
writing of medium-sized, and larger than medium-sized files; such known prior
art file systems are described, for example, in reference [1]. By “medium-sized
files” is meant, for example, data files having a size in a range of, for example,
from 4 kByte to 1 MByte; by “larger than medium-sized files” is meant, for

example, data files having a size greater than , for example 1 MByte.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-15 -

A simple example of such a known prior art file system is as follows: when a file
whose size is one byte is stored into a file system where the size of a cluster
(data cluster) or block (block as physical record) is by default 4096 bytes, then a
hardware non-volatile memory, for example see reference [2], wastes 4095
bytes, namely 99.98%. Such wastage corresponds to gross inefficiency in data

storage.

In a given data filing system, the amount of wasted bytes can always be
computed when both the size of the file in bytes and the size of a cluster, namely
“a data cluster”, or block, namely “block as physical record”, used in that
particular file system are known. A principal increase in cost-efficiency that
embodiments of the present disclosure yield is gained in such file systems where
the operating system consists of files smaller than aforementioned medium-sized
files, that in known prior art data filing systems operate to cause considerable

slack space in hardware non-volatile memories.

For example, the Android® operating system uses tens of thousands of images,
logos and icons that must be stored in fast non-volatile memories so that they
can be loaded fast into Random Access Memory (RAM) of a portable electronic
device. Therefore, the majority of such images, logos and icons are smaller in
size, namely smaller in number of bytes, than the pre-defined size of a cluster,
namely “a data cluster”, or block, namely “block as physical record”, used in that
particular file system, because these files are originally small or they have been

compressed maximally to fit their purpose in the portable electronic device.
Embodiments of the present disclosure are operable to enable removal of slack
space in memory; when the embodiments are employed in known prior art file
systems such as:

Ext3, Ext4, NTFS, FAT, NFS, VFS, and similar,

used in several known operating systems:

iOS, Android, OS X, Linux, BSD, Windows, and similar,

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-16 -

a considerable increase in memory usage efficiency is susceptible to being
achieved. “Ext3”, “Ext4”, “NTFS’, “FAT, “NFS’, “VFS’, as well as “i0S”,
“Android”, “0OS X', “Linux”, “BSD’, and “Windows” include registered

trademarks.

In the following, several embodiments of the present disclosure will be described.
These embodiments are all based on moving all such files that are smaller,
originally or after compression, than the pre-defined size of a cluster (data
cluster) or block (block as physical record) into an optimized data container, that
however is located physically in the same non-volatile memory as the files. More
specifically, at least a last cluster of such files needs to be smaller than a pre-
defined size of a cluster, namely “a data cluster’, or block, namely “block as

physical record”, or at least small enough, as will next be described.

In embodiments of the present disclosure, a small file or a last cluster, namely “a
last data cluster”, or block, namely “block as physical record’, of a larger file
reserves only as many bytes or bits of memory as it needs and thus does not
reserve unnecessary slack space from the non-volatile memory. However, it will
be appreciated that there is no need to move other than the small files and/or
the last clusters of those larger files mentioned above together, so as to enable a
fast and easily implementable technical solution. Of course, for example, an
entire data content of larger files can also be moved together so that the data
content will be in a row. Sometimes, the clusters are moved only when the
amount of bytes saved is at least some predefined size; for example, a
predefined size of 0.5 kB when 4 kB clusters are used. Such a minimum size rule
is optionally employed so as to avoid a non-necessary (i.e. unnecessary)
combination of clusters that do not remove enough slack space in data memory.
It is also optionally possible to move those last clusters together, so that
another, more accurate clustering can be used; for example 0.5 kB clusters are
used with 4 kB original clusters. This means that the cluster size is hierarchical,
which makes it possible to remove large sections of slack space, although not as
much as the maximum savings that can be achieved by using clusters with 1
byte accuracy. Moreover, other cluster sizes can be used, for example smaller
and larger, but typically the selected cluster size or cluster sizes should be

selected so that they do suitable alignment to the stored data compared to non-

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-17 -

aligned 1 byte (8-bit) clusters based on the needs of the used system, for
example 32/64/128-bit or 512/1024-byte.

In embodiments of the present disclosure, physical data files can be replaced by
links, for example in a manner as described in reference [4], that optionally point
to an optimized data container. Moreover, in the embodiments, physical files can
be moved to one or more optimized data containers that, with regard to the data
filing system, are created as virtual files, as a device or as parallel data filing
systems. The clusters, namely “data clusters”, or blocks, namely “blocks as
physical record’, reserved by files moved in this way are set free in the data
filing system and they are technically copied into clusters, namely “data
clusters”, or blocks, namely “blocks as physical record”, reserved by an
optimized data container in the same non-volatile memory. Embodiments of the
present disclosure are optionally also used for volatile memories, when they are
also read using a filing system access. Typically those volatile memories are not

read using a filing system access.

Embodiments of the present disclosure make it possible to achieve a cost-
efficient technical solution in many different operating systems, for example in
portable electronic devices as aforementioned, thereby paying attention to the
user permissions and other important basic functionalities of a data filing system.
It will be appreciated that the data filing system pursuant to the disclosure, also
known as a “file system”, can also function as an independent filing system just
like the contemporary filing systems, and is susceptible to being implemented at
a hardware level or as a software driver, or a combination of a hardware level
and a software driver, but resulting in even better overall data storage efficiency

and enhanced data storage capacity for given memory.

On the other hand, embodiments of the present disclosure are concerned with a
software solution that enables integration into an existing data filing system
software that can be executed both in an administrative mode, namely “admin
mode”, and in a user mode; with regard the user mode, reference [5] is
concerned with “user space”. If embodiments of the present disclosure are
integrated into a kernel of an operating system, then it will become a part of the

operating system, namely being executed with permissions of the operating

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-18 -

system, as part of its associated kernel space. It is also possible to implement
embodiments of the present disclosure in the kernel space that is run in the
kernel of the operating system, if the files whose space usage is optimized need
elevated permissions or are physically located in another memory, for example in

a section of data memory reserved for firmware.

In certain operating systems, embodiments of the present disclosure can be
implemented also as a background service, but in such a case it is a software
application being executed in the operating system that is responsible for
running the implementation and that is mounted, see reference [6], in the data
filing system, namely “file system”, as a virtual drive or as a virtual device; see

reference [7] with regard to virtual file systems.

If it not possible to integrate embodiments of the present disclosure into a file
system of a given operating system, either because of strict operating conditions
set by an associated device manufacturer or because it would not otherwise be
possible to implement technically, then the embodiments can still be
implemented by using a network drive; network drives are described in reference
[8] in respect of network file systems. However, a NFS-based system must be
implemented in such a way that contents of a given optimized data container

reserves drive space in the same file system.

Optionally, embodiments of the present disclosure can be implemented so that
only such data files that have mutually similar permissions are moved together.
Optionally, information about the file permissions are moved together with the
files themselves, which makes it easier to restrict unauthorized usage of the data

files, as associated administrator’s desire.

When contemporary operating systems are principally based on *NIX systems,
embodiments of the present disclosure are susceptible to being used for the
Linux operating system, since such implementation can be adapted with minor
changes, also on Android® and iOS® mobile platforms for example. “*NIX”,

“Android” and “iOS” are registered trademarks.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-19 -

Regardless of which technical implementation is used, the files to be optimized
need to be assembled into the data container. The data container can be a
simple file or a database, such that embodiments of the present disclosure are
beneficially used when:

(1) data files are smaller than a cluster (data cluster) or block (block as
physical record), wherein the data files are stored into the data container;
and

(ii) the last cluster or block of files larger than a cluster is stored into the data
container; or

(ili) the entire file is stored into the data container, which is located physically

on a data storage drive/disk as the optimized files.

A very simple solution pursuant to the present disclosure is a virtual file that has
the size of one file which simulates compatibility with the existing file system.
However, this virtual file in itself comprises an optimal way to store files without
the current prior art limitation of having a minimum size for a cluster (data
cluster) or block (block as physical record). Such a functionality can be
implemented, for example, by using a proprietary FUSE program, described in
reference [11], which offers a simple interface for user space applications for
exporting a virtual file system to the Linux kernel. An example of a virtual filing
system pursuant to the disclosure, implemented by using FUSE
(https://en.wikipedia.org/wiki/ Filesystem _in_Userspace) is illustrated in an
upper box of FIG. 5, wherein a virtual file system SZIPFS is operable to function
in a user space, so that FUSE executes software code that needs elevated kernel
space privileges. A command used is ‘Is -1 /home/jed’, which is used to provide a
detailed list of files in a directory ‘home/jed’ that maps to the virtual filing
system, using a starzipfs computer program that employs embodiments of the

present disclosure and thus lists the files there as if they were in /home/jed’.

Next, there will be provided an explanation on how such a virtual file system is
implemented as an independent filing system comparable to, for example, Extent
and NFS (see reference [8]). Such a scenario is illustrated in a lower box of FIG
5, wherein SZIPFS is located in a kernel space. In such a scenario, mounting
SZIPFS needs elevated privileges. SZIPFS employs a filing system that needs to

be created using admin permissions, but a user is able thereafter to use

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-920 -

corresponding SZIPFS disk space with methods pursuant to the present
disclosure, as if it were, for example, an EXT4 journaling file system (see

https://en.wikipedia.org/wiki/ Ext4).

In an example embodiment of the present disclosure, the initialization, mounting
and usage of a virtual file system is simple and easy technically, by giving
commands in two phases. It will be appreciated that such a procedure can also
be automated and configured in an ‘/etc/fstab’ file, for example as described in

reference [12]. Following steps are thus executed:

(i) creating a mount point directory for an optimal data container, for
example by giving a command: mkdir /mnt/szip; and
(ii) linking the optimal data container to the directory being used, for example

by giving a command : ./starzipfs /home/jed /mnt/szip.

In such an implementation, applications and/or libraries have an option to
overwrite directly standard input/output operations (1/0O) of file handling, such as

following C functions:

fopen, fseek, fread, fwrite, fclose

but not limited thereto. This option enables pointing/linking to a file inside an
optimized data container, instead of pointing/linking directly to a file. The
described implementation is optimal if the optimized data container is used only
for a certain solution or application, and there is therefore no need to make
changes into an associated operating system such as to modify user permissions,
or to install and/or start software programs necessary for implementing a
service, something that needs to be done, for example, when implementing a

data filing system using aforementioned FUSE.

It is also optionally possible, pursuant to the present disclosure, to overwrite
standard /O functions of file handling:
(a) in advanced programming language software code, in which case such

changes affect only the application and/or library internally; or

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-29 -

(b) in the application Programming Interface (APl) of the operating system, in
which case the changes may also affect external applications and/or

libraries.

It will be appreciated that, with embodiments pursuant to the present disclosure,
there is no need to overwrite I/O functions of file handling if files of the optimized
data container are used, in which case a programmatic interface provided by the

optimized data container can be used directly.

In a recent 2015-08 version of the Android® operating system (OS), namely
open source software as described in reference [9], there are included 22834
images, namely icons, logos and other graphics that are installed into a file
system of devices along with the operating system (OS); “Android’ is a
registered trademark. These images are used in the construction of a principal
user interface, namely a principal graphical user interface (GUI). There will next
be described two examples in which it is assumed that image files are stored into
a physical solid state drive (SSD) memory whose block size is by default 4096
bytes; with regard to SSD, see reference [10]. Moreover, in the examples, the

files are stored as PNG images.

In a first example pursuant to the present disclosure, all such images are
selected whose size in bytes, namely their actual size, is either of a mutually
same size as that of the cluster (data cluster) or block (block as physical record),
or smaller than that, namely all together 17846 PNG files. The content of these
files all together is 19982717 actual bytes, but they reserve 73097216 bytes on
disk, which means that using embodiments of the present disclosure releases a
total of 53114499 bytes of slack space to be used more productively, namely
72.66%, which is a considerable improvement as regards utilization of physical

memory.

In the second example pursuant to the present disclosure, all aforementioned
images of the first example are selected, irrespective of their content size,
namely all together 22834 PNG files. The content of these files all together is
283565760 actual bytes, but they reserve 347996160 bytes on disk, which

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095
-90_

means that using embodiments of the present disclosure is capable of releasing a

total of 64430400 bytes to be used more productively, namely 18.51%.

In both the aforesaid first and second examples, it is possible to achieve a

considerable improvement in data memory utilization.

It will be appreciated that if these files were to be compressed with, for example,
a proprietary GMVC® codec, developed by Gurulogic Microsystems Oy, Finland,
the GMVC® codec typically compressing approximately two times better that a
contemporary PNG codec, then embodiments of the disclosure are capable of
removing even more slack data file space, and thus even more disk space is
saved for more productive use. Moreover, it will further be appreciated that even
though these simplest examples receive a file in the PNG format and store it on
disk in re-organized manner also in the PNG format, it is also possible to execute
data format conversion as well in connection with the reading and the writing of
the file, on condition that such a conversion can be performed fast enough so
that it does not interfere with the user experience. Thus, for example, a PNG file
can, in a solution pursuant to the present disclosure, first be converted into a
.gmvc file which is then stored on disk using methods pursuant to the present
disclosure. Then, as the user or the system desires to inspect the file, it can be
read from the system as a PNG file, which means that the inverse conversion
from GMVC to PNG format needs to be executed in connection with reading the
file. Of course, the user or the system may potentially wish to read the file
content in the .gmvc format, in which case the format conversion is not

necessary in an associated data reading process.

Optionally, it is also possible that the user or the system is desirous to render an
image on a device display from the file system, and in that case it is
advantageous to execute associated transcoding directly from the .gmvc file into
a BGRA or RGBA format, for example, namely without a need firstly to convert
the file to .png format and then thereafter to a BGRA or RGBA format, which are
directly usable at the input of the display device; such a situation is usually not

the case with, for example, PNG or GMVC® formats.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
.93 -

Referring to FIG. 1, there is shown an illustration of a portable electronic device,
for example a smart phone, a gaming terminal, a surveillance drone including
on-board camera and image data storage (wherein efficient data storage is
essential in an autonomous drone to achieve a low overall drone weight by
reducing a mass of integrated circuits employed in the drone), a personal
instrumentation device, a medical diagnostics device, a robotic device, a
surveillance device (for example a body-mounted camera device and associated
data logger), a satellite device, a space probe, a down-borehole monitoring
probe for use in petrochemical industries (for example a bore-hole inspection
device), or similar, indicated generally by 10. The portable electronic device 10
includes a data processing arrangement 20 including a data processor 30 and its
associated data memory 40. Moreover, the data processing arrangement 20 is
coupled to a graphic display arrangement 50 which is operable to provide a
graphical user interface (GUI). Optionally, the GUI is implemented as a touch-
screen. Optionally, the graphic display arrangement 50 is coupled wirelessly (for
example via a proprietary G4 telephonic wireless communication link, wherein
“G4” is a trademark) to the data processing arrangement 20, for example when
the portable electronic device 10 is a remote surveillance drone that is required
to stay air-borne for long periods when in operation and to record surveillance
video, wherein the surveillance video is potentially in a series of brief video
shoots whose data is smaller than a virtual container, cluster or block of the data

memory 40 of the device 10.

In operation, data is stored in, and accessed from, the data memory 40, wherein
the data processing arrangement 20 employs a data filing system, also known as
a “file system”, which organises the data memory 40 into clusters or blocks, as
aforementioned. The data processing arrangement 20 is operable to execute
one or more software applications, known as “Apps”’, for enabling the data
processor arrangement 20 to perform one or more user-defined functions. In
operation, one or more graphical symbols 60, known as “icons’, are shown on
the graphical user interface (GUI); data required for generating the one or more
graphical symbols 60 are stored in the data memory 40, wherein data for a
given graphic symbol 60 is stored in a corresponding given cluster of the data
memory 40. The user is able to invoke the one or more software applications

(Apps) by touching corresponding one or more graphical symbols 60 of the GUI,

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-24 -

whereafter the one or more invoked software applications are executed on the

data processor 30.

Referring next to FIG. 2, there is shown an illustration of a portion of the data
memory 40 which is organized in a conventional manner by the aforementioned
data filing system into clusters, denoted by 100A, 100B, 100C and so forth,
wherein the clusters 100A, 100B, 100C are operable to have stored therein
corresponding data 110A, 110B, 110C corresponding to the one or more
graphic symbols 60, with corresponding slack spaces 120A, 120B, 120C. When
the data 110A, 110B, 110C is considerably smaller in size to that of the clusters
100A, 100B, 100C respectively, the data memory 40 is utilized very
inefficiently. Moreover, when data compression is employed to compress the
data 110A, 110B, 110C within their respective clusters 100A, 100B, 100C,
utilization of the data memory 40 becomes even more inefficient. This means
that when compression is applied to data, it does not offer any benefit to the
used memory space, for example disk space, when the amount of data is

originally below the size of a cluster.

Referring next to FIG. 3A, embodiments of the present disclosure are operable to
create an environment in which the data 110A, 110B, 110C are concatenated
within a virtual container 150 which is then stored in one or more of the clusters
100A, 100B, 100C with relatively little slack data space in the data memory 40,
representing a considerable improvement in utilization of the data memory 40,
despite the data memory 40 and its associated filing system continuing to
manage the data memory 40 in terms of clusters 100. An advantage of such an
approach is that applying compression to the data 110 in the virtual container
150 is capable of further improving utilization of the data memory 40, in
contradistinction to known filing systems employing clusters not benefitting from
such compression, as aforementioned. Despite the data 110 being concatenated
into the clusters 100 as illustrated in FIG. 3, embodiments of the present
disclosure provide for the data 110 within the container to be searchable and

extractable, for example for generating one or more of the graphical symbols 60.

Referring next to FIG. 3B, embodiments of the present disclosure are operable to

create an environment in which several portions of data 110A’, 110B’, 110C’

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-95 .

are stored inside one cluster in virtual containers pursuant to an embodiment of
the present disclosure. The limits of the clusters are not crossed by one portion
of data unless the size of that particular portion of data is not itself larger than
the cluster whereat it is stored, as is indeed the case with the portion of data

110D’ as shown.

Referring next to FIG. 3C, a scenario depicted therein is otherwise similar to that
of FIG. 3B, but in FIG. 3C, the portions of data are not aligned with byte
precision, but instead with aforementioned alignment precision, so that memory
addresses used are for example 4-byte-aligned, 8-byte aligned or 16-byte
aligned, which optimizes the management portion. It will be appreciated that, for
the enlarged portion of FIG. 3C, 4-byte alignment is used. However,
embodiments of the present disclosure are optionally implementable with other

alignment precisions, wherein the alignment precisions are to a plurality of bytes.

[t will be appreciated that aligning the portions of data by alignment precision
instead of byte precision can be used in all embodiments of the present

disclosure.

Referring next to FIG. 3D, there is illustrated therein a manner in which other
files can be added to a last given cluster, in addition to end portions of large
files. Alternatively, optionally, the cluster containing the end portions of large
files can be moved to another cluster, as depicted next in FIG. 3E. It will
therefore be appreciated that clusters of large files have been filled, thereby. The
last file in FIG. 3D has a size of 2.5 clusters; between the two large files, there is
a cluster with several small files, that shows a manner in which in a solution with
equal-sized clusters, files with many different sizes can be inserted, and still all

clusters can be filled with either small files or with end portions of large files.

Referring next to FIG. 3E, there is illustrated therein a manner in which an end
portion of one large file has been moved into a same cluster with an end portion
of another large file. Alternatively, small files can be used instead of the end
portions of large files to fill the cluster. It will be appreciated that it is beneficial,
as regards data management, that the end portions of the large files are not

separated from the rest of the file, even though they can optionally be

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-96 -

separated; typically, the management of files is easier when end portions of the

large files are not separated from the rest of the file.

Referring next to FIG. 3F, embodiments of the present disclosure are operable to
create an environment in which there are several smaller clusters with room
enough for one or more portions of data 110A’’, 110B”’, 110C’ and also larger
clusters for larger portions of data 110D’’. This kind of solution is well suited for
cases where a memory-aligned scheme is desired, for example where a memory-
aligned scheme is desired that also employs hierarchical clustering. In FIG. 3F,
there is provided a illustration of a manner in which one large cluster can be
divided hierarchically for example into four smaller clusters, which can then be
divided further into smaller clusters and so forth. Such hierarchical clustering is
optionally implemented on a basis of at least one of:

(a) one or more temporal (i.e. time-defining) parameters describing data, for
example a time at which that data is acquired from a sensor, for example
from a surveillance camera;

(b) one or more parameters that indicate a relative importance of the data, for
example a parameter that is indicative of whether or not a given item of
data is susceptible to being deleted to free up space in data memory in
certain defined situations, for example in a situation of a memory purge,
memory audit or similar;

(c) one or more parameters that indicate a type of the data (for example
video data, sensor data, audio data);

(d) one or more parameters that indicate ownership of the data (for example
user data in contradistinction to data that is required for defining device
operation, for example executable software that is required for maintaining
device operation); and

(e) one or more parameters that indicate a priority order in which to data is to
be communicated from the device to another device or database (for
example via a wireless data link from a surveillance drone, surveillance
camera or a surveillance robot).

By “at least one of’ is used, for example, to indicate one of (a) to (e),

alternatively any combination of (a) to (d), for example (a) and (b), for example

(a) and (e), and so forth.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
07 -

Referring next to FIG. 3G, there is illustrated a situation therein where several
large and small image files have been inserted into clusters; some of the files
were originally uncompressed (for example bitmaps), whereas some files were
originally losslessly compressed image files (for example png, gif) and one file
was originally compressed in a lossy manner (for example jpg). It can be seen in
FIG. 3G a manner in which a lot of empty space remains in some clusters,
whereas some files, such as a file named “graph05.png”, do not fit into one

cluster. As a result, data memory is not employed in an optimal manner.

Referring next to FIG. 3H, there is illustrated how the same files that were
presented in FIG. 3G have been compressed with starzipfs and inserted into
three clusters in such a way that the first cluster 100A contains small files and a
large file that begins in the second cluster 100B continues in the next cluster
100C. In FIG. 3H, there is provided an illustration of a manner in which the large
bitmap (for example car.bmp) of FIG. 3G has been compressed considerably, so
that it now fits into one half cluster instead of previously taking up almost two
clusters. It will be noted that the extension of the files, except a file
‘theme4.png’, has been changed into ‘gmvc’, indicating that they were

compressed using another format than their original format.

Referring to FIG. 31, there are illustrated the same files and clusters as in FIG.
3H. However, in FIG. 31, the file 'car.gmvc’ is currently being accessed, namely
being read. Such reading entails that the file must first be located, then it has to
be read, after which it has to be starzip-decompressed into its original format (if
it is desired to be read in its original format), information of which was
maintained in the system, in the file management portion. The starzip-
compressed gmvc file can be first read entirely into Random Access Memory
(RAM), then decompressed entirely into its original format, also into RAM.
However, the starzip-compressed gmvc file can also be decompressed into its
original format directly from the file container. Optionally, content that is thereby
opened, namely accessed, can be stored in the original format in the file system.
Optionally, an embodiment of the present disclosure enables reading a file in
another format than it had originally, namely in a transcoded format. For
example, the file ‘car.omp’ is optionally read from the virtual container in the png

file format, or into the gif file format.

10

15

20

WO 2017/036606 PCT/EP2016/025095
.08 -

Additionally, optionally, at least a portion of the data 110, or links to such, are
copied also to an external device, in order to enable using the data in other
devices, for example in a variety of devices of the same user, for example when
transferring data from a personal computer to a smart phone, or from a smart

phone to a wearable digital electronic device such as a smart watch.

It will be appreciated that even if the embodiments pursuant to the disclosure
are capable of using a file in an optimized fashion directly from an optimized data
container that is located in a physical non-volatile memory of the same device, it
is possible that also initially storing the files, such as icons representing different
functions, to the device can take place directly in an optimized manner, instead
of storing the data in a known way and thereafter optimizing the storage of the

data in the device.

Referring next to Table 2, there is shown an example of file name, with

corresponding file size in disk data memory, with corresponding file size in bytes.

Table 2: Linking example

File name File size in disk File size in bytes
border.png 4096 67

alpha.9.png 4096 117

white.png 4096 842

holo6.png 4096 3070

In Table 3, there is shown an example of file name, file size in disk data memory,

and corresponding file size in bytes.

Table 3: Linking example

File name File size in disk | File size in bytes

/dev/szip 4096 4096

10

15

20

25

30

WO 2017/036606 PCT/EP2016/025095

-29 -
border.png 0 67
alpha.9.png 0 117
white.png 0 842
holo6.png 0 3070

As illustrated above in Tables 2 and 3, the files on the left-hand-side are moved
to an optimal data container 150 and replaced with a symbolic link, so that they
can still be found in the file system. It will be appreciated that the physical actual
file size of the files in the left-hand-side table is only 4096 bytes, because the

contents of the files are linked to a virtual file called /dev/szip.

It will be appreciated that this kind of “virtual file names” such as above make it
possible firstly to open a file and, after the opening, to read/use the file. That is,
the embodiments pursuant to the present disclosure do not need to know,
namely be provided with information regarding, a given actual file name
anymore, yet a file associated with the given file name still physically exists.
Further aims of using such a virtual file name concern not always needing to
store the entire file name. Instead, searching for the file is optionally executed
based upon some sort of virtual identification or modified file name (for example
using an abbreviation or a graphical symbol on a GUI), whereby the actual file
name is always acquired, for example, from the file system when necessary.
Such an identification or file handle is optionally stored, for example, into a

database, so as to enable identification and processing of the file.

Now, from a point of view of regular filing systems, the physical file exists in a
virtual file system, pursuant to the present disclosure. In principle, all the files of
the embodiments pursuant to the disclosure are virtual from a point of view of
the regular file system, even though the actual names were known. Indeed, the
file names from a point of view of the regular filing systems are always actual

names.

The management portion contains information about which files exist and in
which locations. If a file is compressed, then the management portion will still

contain the name of the uncompressed (original) file. When the data is accessed

10

15

20

25

WO 2017/036606 PCT/EP2016/025095
-30 -

and read, it will be detected that the file has a compressed format, and on
account of the original name being stored, this enables the system to reconstruct
the file correctly, in the case where it is desired to read the file in its original

format.

Alternatively, the file can also be transcoded during the reading process, in which
case the format of the opened file will differ from its original format. In that case,
the transcoding can be executed either via the original format or directly from
the compressed format. For example, if it is desired to access the data in the
compressed format, then it is sufficient just to read the data. Otherwise,
minimally, the compressed format needs to be decoded, after which the
intermediate result needs to be encoded into the desired format, unless it is
possible to execute the transcoding in another, beneficial way, by decompressing

and compressing the data only partially.

Referring next to Table 4, there is provided further information regarding content
inside /dev/szip and a corresponding offset employed in embodiments of the
present disclosure; Table 4 thus provides, for example, information regarding an

image file.

Table 4: Image file details

Content inside /dev/szip Offset
meta-data to files(s) offsets 0 (total 47 bytes)
border.png() 47

alpha.9.png 114

white.png 231

holo6.png 1073
image7.bmp 1201
instruks1.pdf 1241
instruks2.pdf 1407

Table 4 presents the image file /dev/szip which stores the files into one physical

data container.

Referring next to FIG. 4, the container 150 is generated by operation of digital

hardware components and/or by operation of one or more software layers that

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-31 -

cooperate with the file system, and is optionally an integral part of the file
system. For example, in an embodiment of the present disclosure wherein the
file system is implemented as a software layer 200, the file system is operable
to store data in clusters 100. There is utilized an additional software layer 210
for implementing the container 150 for achieving more efficient data storage in
the data memory 40, pursuant to a regime as illustrated in FIG. 3A, FIG, 3B and
FIG. 3C. The additional software layer 210 is operable to assist with accessing
the individual data 110, as well as ensuring that it is concatenated, or otherwise

stored compactly, within the clusters 100.

Thus, embodiments of the present disclosure are susceptible of achieving
improved, for example maximal, cost-efficiency in data storing capacity,
especially with regard to small files that are smaller than the cluster (data
cluster) or block (block as physical record) defined in a file system 200.
Considerable amounts of physical memory are thereby saved during data
storage, namely which can be important in ecosystems and in embedded

systems.

Moreover, file storing methods described in the present disclosure enable user
efficient data content compression and encryption for users to be achieved; if
necessary, backup copying, for example into another file system or in a
centralized cloud, is provided, as aforementioned. Therefore, a decoder
integrated in a data storing system of the present disclosure is able to
decompress contents of a file for a given user, even if the file is compressed and
encrypted. An encoder integrated in the data storing system enables transcoding
a file from one format into another; namely, a file system in an ecosystem can
then request, for example, a .bmp image file in the .png format, in which case
the file is decoded from its original format and re-encoded into the format

indicated by the file extension of the link.

Embodiments of the present disclosure can be implemented so that they are
compatible with an a priori file system most commonly used in a given data
“ecosystem”, thereby not endangering data security in the system and not
interfering with user permissions that are already established in the given data

“ecosystem”. An “ecosystem” here refers to a digital environment in which data

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-32-

is stored, processed and communicated, and should not be construed literally to

relate to a biological ecosystem with living plants, animals, insects and so forth.

Moreover, embodiments of the present disclosure, as a result of storing data
efficiently into data cluster, data containers and data blocks, as well as storing
the data in a hierarchical manner, as aforementioned, enable an operating
system to manage data stored in memory, for example captured sensor data, to
be managed and processed in a more efficient manner, for example by providing

for more efficient use of data memory.

The method pursuant to the disclosure is optionally implemented in two ways, as
regards memory allocation. One way is to reserve/allocate a disk (or other type
of data storage medium) for purposes of a file storing system pursuant to the
present disclosure, in a similar manner as, for example, TrueCrypt or the Stacker
disk compression utility function. Another beneficial way is to implement the
method in such a way that there is no need initially to reserve a disk (or other
type of data storage medium), but instead files that do not use the method
pursuant to the disclosure can co-exist with files that use it, and thus the method
pursuant to the disclosure utilizes clusters one by one when needed, namely in a
selectively invoked manner. Therefore, it is easy to move even existing data to
be used on a disk (or other type of data storage medium) optimized with this
method, one file at the time. This can be executed even in a background process,
without losing disk (or other type of data storage medium) space at any point by
pre-allocating/pre-reserving existing disk (or other type of data storage medium)
space. Moreover, since the method pursuant to the disclosure can use existing
disk (or other type of data storage medium) space, it addresses a problem that
known data filing systems often have, namely a problem of not being able to
perform the pre-reservation of space because the disk (or other type of data

storage medium) is already full.

In the foregoing, the device 10 is operable to allow addressing the data content

objects 110, 60 via use of virtual files, for example.

Referring next to FIG. 5A, there is illustrated therein an embodiment pursuant to

the disclosure, wherein a virtual filing system pursuant to the disclosure is

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-33-

implemented by using FUSE (see reference [11]), and wherein a virtual file
system SZIPFS is functioning in user space. In FIG. 5A, when a file is to be
accessed, a Unix/Linux terminal command “/s -/ /home/jed” (which lists all files
in the directory “/home/jed”) is executed in a user space via an access to the
shared library “glibc” in the user space, and via a virtual filing system (VFS) in a
kernel space, then via aforementioned FUSE in the kernel space, then via the
access library “glibc” in the user space, and then via a library associated with
FUSE (namely “/ibfuse”) in the user space, so as to access, by executing the
command “./starzipfs home/jed/”, an actual file that is stored in a highly
efficient manner pursuant to the present disclosure in a memory-aligned manner.
The contents of the directory are then communicated back as illustrated to the
user as response to the command “/s -/ /home/jed”, executed in the user space,

namely via the VFS functioning under aforementioned FUSE.

Referring to FIG. 5B, there is illustrated therein an embodiment pursuant to the
disclosure, wherein a virtual file system implemented as an independent filing
system, and wherein the virtual file system SZIPFS is located in kernel space.
The virtual file system SZIPFS is operable to access data, alternatively store

data, via use of glibcto reach Is -1 /home/jed.

Modifications to embodiments of the invention described in the foregoing are
possible without departing from the scope of the invention as defined by the
accompanying claims. Expressions such as “including”, “comprising”,
“incorporating”, “consisting of”, “have”, “is” used to describe and claim the
present invention are intended to be construed in a non-exclusive manner,
namely allowing for items, components or elements not explicitly described also
to be present. Reference to the singular is also to be construed to relate to the
plural; for example, expressions such as “one or more” and “at least one of”
relates to the singular in a given example embodiment of the disclosure, and to
the plural in another given embodiment of the disclosure. Numerals included
within parentheses in the accompanying claims are intended to assist
understanding of the claims and should not be construed in any way to limit

subject matter claimed by these claims.

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095

-34 -

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

Data cluster - Wikipedia, the free encyclopedia (accessed August 17,
2015): URL: https://en.wikipedia.org/wiki/Data_cluster

Non-volatile memory - Wikipedia, the free encyclopedia (accessed August

17, 2015). URL: https://en.wikipedia.org/wiki/Non-volatile_memory

Method of Communication Data Packets Within Data Communication
Systems (March 2015). Patent Application, GB 1504336.7.

link (Unix) - Wikipedia, the free encyclopedia (accessed August 17, 2015):
URL: hitps://en.wikipedia.org/wiki/Link % 28Unix% 29

User space - Wikipedia, the free encyclopedia (accessed August 17, 2015):

URL: https://en.wikipedia.org/wiki/User_space

Mount (computing) - Wikipedia, the free encyclopedia (accessed August
17, 2015): URL:
https://en.wikipedia.org/wiki/Mount_% 28computing% 29Network File
System - Wikipedia, the free encyclopedia (accessed August 17, 2015):
URL: htips://en.wikipedia.org/wiki/Network_File_System

Virtual file system - Wikipedia, the free encyclopedia (accessed August 17,
2015): URL: hitps://en.wikipedia.org/wiki/ Virtual_file_system

Network File System - Wikipedia, the free encyclopedia (accessed August
17, 2015): URL: https://en.wikipedia.org/wiki/Network_File System

Building the System | Android Open Source Project (accessed August 17,
2015): URL: https://source.android.com/source/building.htm|

Solid-state drive - Wikipedia, the free encyclopedia (accessed August 17,
2015): URL: https://en.wikipedia.org/wiki/Solid-state_drive

10

WO 2017/036606 PCT/EP2016/025095

[11]

[12]

-35 -

FUSE: Filesystem in Userspace (accessed August 17, 2015): URL:

hitp://fuse.sourceforge.net/

htips://en.wikipedia.org/wiki/Filesystem in Userspace

fstab - Wikipedia, the free encyclopedia (accessed August 17, 2015): URL:
https://en.wikipedia.org/wiki/ Fstab

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-36 -

CLAIMS

1. A method of operating a data memory (40) of a device that is managed by
a filing system (200) that is operable to store data (110) in respect of one or
more clusters or blocks (100) within the data memory (40), characterized in that
the method includes:

(a) assembling together a plurality of data content objects (110, 60) into a
virtual container (150);

(b) storing the virtual container (150) and its associated data content objects
(110, 60) into one or more of the one or more clusters or blocks (100),
wherein the data content objects (110, 60) are memory-aligned within the
one or more clusters or blocks; and

(c) arranging for the data content objects to be individually accessible in their

virtual container (150).

2. A method as claimed in claim 1, characterized in that the method includes
selectively accessing one or more of the plurality of data content objects (110,

60) from the virtual container (150) stored within the data memory (40).

3. A method as claimed in claim 1 or 2, characterized in that the plurality of

data content objects (110, 60) have mutually different file formats.

4. A method as claimed in claim 1, 2, or 3, characterized in that the method
includes transcoding one or more of the data content objects (110, 60) when
storing and/or accessing them from their virtual container (150) stored in the

data memory (40).

5. A method as claimed in claim 1, 2, 3, or 4, characterized in that the
method includes compressing, encrypting, decompressing or decrypting one or
more of the data content objects (110, 60) when storing and/or accessing them

from their virtual container (150) stored in the data memory (40).

6. A method as claimed in any one of the preceding claims, characterized in

that the method includes arranging for at least one of the plurality of data

10

15

20

25

30

35

WO 2017/036606 PCT/EP2016/025095
-37-

content objects (110, 60) to include a link to an external database relative to the

data memory (40).

7. A method as claimed in any one of the preceding claims, characterized in
that the plurality of data content objects (100, 60) corresponds to data for
generating one or more icons for presentation via a graphical user interface
(GUI, 20).

8. A device (10) including a data memory (40) that is managed by a filing

system (200) that is operable to store data (110) in respect of one or more

clusters or blocks (100) within the data memory (40), characterized in that the
device (10) is operable:

(a) to assemble together a plurality of data content objects (110, 60) into a
virtual container (150);

(b) to store the virtual container (150) and its associated data content objects
(110, 60) into one or more of the one or more clusters or blocks (100),
wherein the data content objects (110, 60) are memory-aligned within the
one or more clusters or blocks; and

(c) to arrange for the data content objects to be individually accessible in their

virtual container (150).

9. A device (10) as claimed in claim 8, characterized in that the device (10) is
operable selectively to access one or more of the plurality of data content objects

(110, 60) from the virtual container (150) stored within the data memory (40).

10. A device (10) as claimed in claim 8 or 9, characterized in that the plurality

of data content objects (110, 60) have mutually different file formats.

11. A device (10) as claimed in claim 8, 9, or 10, characterized in that the
device (10) is operable to transcode one or more of the data content objects
(110, 60) when storing and/or accessing them from their virtual container (150)

stored in the data memory (40).

12. A device (10) as claimed in claim 8, 9, 10 or 11, characterized in that the

device (10) is operable to compress, encrypt, decompress or decrypt one or

10

15

20

25

WO 2017/036606 PCT/EP2016/025095
-38-

more of the data content objects (110, 60) when storing and/or accessing them

from their virtual container (150) stored in the data memory (40).

13. A device (10) as claimed in any one of claims 8 to 12, characterized in that
the device (10) is operable to arrange for at least one of the plurality of data
content objects (110, 60) to include a link to an external database relative to the

data memory (40).

14. A device (10) as claimed in any one of claims 8 to 13, characterized in that
the plurality of data content objects (100, 60) corresponds to data for generating
one or more icons for presentation via a graphical user interface (GUI, 20) of the
device (10).

15. A computer program product comprising a non-transitory computer-
readable storage medium having computer-readable instructions stored thereon,
the computer-readable instructions being executable by a computerized device
comprising processing hardware to execute a method as claimed in any one of

claims 1 to 7.

WO 2017/036606

1/9

4 k(_k‘_\

FIG. 1

PCT/EP2016/025095

WO 2017/036606 PCT/EP2016/025095

110A 110B 110C
120A 120B 120C -
L. J\. . J
Y Y Y
100A 100B 100C

PCT/EP2016/025095

WO 2017/036606

3/9

110A

150
|

110B

// 110C

N
B
| NNNNNNNNN
S |
_

g SN
N ;
e
!
_aaa— ;
1 -

1 .
T OO

J\

J\.

Y
100B

Y
100C

Y
100A

FIG. 3A

110A

:
1
o)
5,— -------------
~ 1
I X
i X
i i
i i
i i
I X
i X
/ :
INNNN
o
e
- _ ;
S _%m
~— |1 1
B 1
c |\ X
SN o |
eSS
IS

J\.

J\

Y Y
100B’ 100C’

v
100A

FIG. 3B

WO 2017/036606 PCT/EP2016/025095

Y

Y Y
100B” 100C” 100D”

FIG. 3C

‘Multiple of 4 bytes

150™

1 EEE) 11OC
110A™_ 110B

N N [110D |)
7 914 917
5 / é i B
i 717 !
| % A0 2?

Y Y Y Y Y Y

100A” 100B™ 100C™ 100D 100E™ 100F”

FIG. 3D

WO 2017/036606 PCT/EP2016/025095
5/9
1108”
110Aa™ 110Fa™ 110Ab™
((11‘1)100[)”” / 110Fb
([,110E” / i

T — e e P
, WL
: i
a ZA7A009%

\ v J\ Y J\. v J\ v J\ v J\ v J
100A™ 1008 100C™ 100D™ 100E™ 100F"
110A™

1o8™
/ / 110C™ 110D 150
/4 J]

i 2\ AP 7 7k

a4|04| A4 |40)

S e ~ J
100A” 100B™”100C™” 100D OB

WO 2017/036606 PCT/EP2016/025095

6/9

theme4.png graph05.png
texture6.gif
4

\ J\ J\
Y Y Y Y Y Y Y

100A™” 100B™” 100C™” 100D™ 100E™" 100F™" 100G™"

FIG. 3G

canyon.jpg /car.bmp

DI

J\ J\ J\ J

themed.png graph05.gmvc texture6.gmvc
car.gmvc \ canyon.gmvc/

4

E. T I- __;/ 1507
i 0 g

\ J\ J\ J

100A™"” 100B™™ 100C™""

FIG. 3H

1 o

WO 2017/036606 PCT/EP2016/025095

7/9

themed.png graph05.gmvc texture6.gmvc

l\/‘f N —
;100A™™ 100B™"" 100C™”

car.omp

1
\
\ car.gmvc car.omp

\
\
\
\
\
\\
\b [E—

FIG. 3l

v
v

WO 2017/036606 PCT/EP2016/025095

8/9

N
o
o

N
-
o

100A 100B 100C | == . =. =

WO 2017/036606

PCT/EP2016/025095

Istarzipfs /home/jed

é s -1 /home/jed |i (libfuse) :
(| awe)ii(gibe)
userspace T — Y e - !
I
kerne FUSE
Ext4
| 1s -1 homesjed |
i (glibe) ;
userspace e N —— i
kernel .

SZIPFS

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/025095

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0001] - [0012],
[0031] - [0032], [0043],
[0070], [0074], [0085],
28; figure 2

5 July 2012 (2012-07-05)
the whole document

X US 2008/270461 Al (GORDON COLIN STEBBINS 1-15
[US] ET AL) 30 October 2008 (2008-10-30)
[0028],
[0066],
[0118]; claim

A US 2012/173981 Al (DAY ALEXANDREA L [US]) 1-15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

21 November 2016

Date of mailing of the international search report

28/11/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Limacher, Rolf

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2016/025095
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2008270461 Al 30-10-2008 US 2008270461 Al 30-10-2008
WO 2008133977 Al 06-11-2008
US 2012173981 Al 05-07-2012 CA 2819136 Al 07-06-2012
CN 103348312 A 09-10-2013
EP 2646970 A2 09-10-2013
US 2012173981 Al 05-07-2012
US 2016259505 Al 08-09-2016
US 2016299643 Al 13-10-2016
WO 2012075295 A2 07-06-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Biblio page:1
	Description page:3
	Claims page:38
	Drawings page:41
	ISR page:50

