a2 United States Patent

Karkkainen et al.

US009859920B2

10) Patent No.: US 9,859,920 B2
45) Date of Patent: Jan. 2, 2018

(54) ENCODER AND DECODER

(71) Applicant: GURULOGIC MICROSYSTEMS
0OY, Turku (FI)

(72) Inventors: Tuomas Karkkainen, Turku (FI); Ossi
Kalevo, Akaa (FI)

(73) Assignee: Gurulogic Microsystems Oy (FI)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 15/321,180

(22) PCT Filed: Jun. 26, 2015

(86) PCT No.: PCT/EP2015/025041
§ 371 (e)(D),
(2) Date: Dec. 21, 2016

(87) PCT Pub. No.:. WO02015/197201
PCT Pub. Date: Dec. 30, 2015

(65) Prior Publication Data
US 2017/0155404 Al Jun. 1, 2017

(30) Foreign Application Priority Data
Jun. 27,2014 (GB) cecevvcicccnce 1411451.6
(51) Imt.CL
GO6F 15/16 (2006.01)
HO3M 7/30 (2006.01)
(Continued)
(52) US. CL
CPC ... HO3M 7/6047 (2013.01); HO3M 7/6005
(2013.01); HO3M 7/6011 (2013.01);
(Continued)

(58) Field of Classification Search
CPC HO04L 65/607; HO4L 65/608; HO4L 67/02;
HO04L 69/08

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0306412 Al 12/2010 Therrien et al.
2012/0219065 Al 82012 Karkkainen et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 2256 934 A1 12/2010
EP 2256934 Al 12/2010
(Continued)

OTHER PUBLICATIONS

“Dictionary coder”, Wikipedia, Mar. 8, 2014, pp. 1-3.
(Continued)

Primary Examiner — Kristie Shingles

(74) Attorney, Agent, or Firm — Eric L. Sophir; Dentons
USLLP

(57) ABSTRACT

An encoder for encoding input data to generate correspond-
ing encoded data is provided. The encoder identifies sub-
stantial reoccurrences of data blocks and/or data packets
within at least a portion of the input data. The encoder then
identifies, in respect of individual elements, where elements
are unchanged and/or changed within the substantially reoc-
curring data blocks and/or data packets. Subsequently, the
encoder encodes unchanged elements in the encoded data by
employing at least one corresponding symbol, or at least one
corresponding bit, for example a single bit, indicating an
absence of change in the unchanged elements relative to
corresponding elements in a reference data block and/or data
packet. Moreover, the encoder encodes changed elements in
the encoded data.

35 Claims, 8 Drawing Sheets

ENCODER
o2

108

DECODER
12

100

US 9,859,920 B2

Page 2
(51) Int. CL RU 2417518 €2 4/2011
HO4L 29/06 (2006.01) RU 2428722 C2 9/2011
WO 2014/131517 Al 9/2014
HO4L 29/08 (2006.01) WO 2014/131526 Al 9/2014
(52) US. CL WO 2014/131527 Al 9/2014
CPC HO4L 65/607 (2013.01); HO4L 65/608
(2013.01); HO4L 67/02 (2013.01); H0é{,)1639(/)0l¢§ OTHER PUBLICATIONS

(58) Field of Classification Search
USPC ittt 709/246
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0233135 Al
2013/0290474 Al
2013/0315307 Al
2014/0337299 Al

9/2012 Tofano
10/2013 Therrien et al.
11/2013 Karkkainen et al.
11/2014 Therrien et al.

FOREIGN PATENT DOCUMENTS

GB 2362055 A 11/2001
GB 2 511355 A 9/2014
GB 2 511493 A 9/2014
GB 2 507 603 B 10/2014

Data deduplication—Wikipedia, the free encyclopedia (accessed
Sep. 27, 2013). URL: http://en.wikipedia.org/wiki/Data_ deduplica-
tion, pp. 1-3.

Delta encoding—Wikipedia, the free encyclopedia. URL: http://en.
wikipedia.org/wiki/Delta_encoding, pp. 1-5.

Written Opinion of the International Searching Authority issued in
International Application No. PCT/EP2015/025041 with dated Oct.
12, 2015.

International Search Report issued in International Application No.
PCT/EP2015/025041 with dated Oct. 12, 2015.

Combined Search and Examination Report under Sections 17 and
18(3) for Application No. GB1411451.6 dated Dec. 22, 2014.
Korean Office Action (and English Translation) with a dated of May
19, 2017 in Korean Patent Application No. 10-2016-7036600, 7
pages.

Russian Office Action and Search Report (with English Translation)
dated Aug. 8, 2017 in corresponding Russian Application No.
2017100660/09(001169), 10 pages.

U.S. Patent Jan. 2, 2018

Sheet 1 of 8 US 9,859,920 B2

ENCODER
102

108

DECODER
112

100

Fig. 1

U.S. Patent Jan. 2, 2018 Sheet 2 of 8 US 9,859,920 B2

s [o ENCODER
E2
N\ Z
AV 4
DECODER 114
112 D3 14

Fig. 2

U.S. Patent Jan. 2, 2018 Sheet 3 of 8 US 9,859,920 B2

IDENTIFY REOCCURRENCES OF
DATA BLOCKS AND/OR DATA PACKETS
302

"y
-

:
1
:
3
:
:
:
¥
3
:
L]
:
:
:
¥
:
—
¥
:
:
¥
3
:
:
:
:
3
]
:
¥
:

IDENTIFY UNCHANGED AND/OR
CHANGED ELEMENTS WITHIN
DATA BLOCKS AND/OR DATA PACKETS
304

ENCODE UNCHANGED AND CHANGED
ELEMENTS FOR DATA STREAM OR
DATA STREAMS
306

]
L
L]
]
L
1
1]
1
1
1
i
1
)
i
L)
i
1
)
1
1
i
i
*
1
1]
*
1
1
1
1
) |
1
1
1
L]
i
)
i
1
i
i
L)
1
1
1
1
1
)
1
1
1
1
L)
1
L)
1
1]
L]
1
L
L]
L

ENTROPY-ENCODE DATA STREAM OR
DATA STREAMS
308

-
O .-

]
[
"
n
"
u
[
n
n
[
"
[
"
n
n
"
1
n
]
n
"
n
"
"
[
n
u
n
"
1
n
[
"
n
"
[
n
"
n
n
n
1
n
n
[
"
[
n
u
n
L]
1
n
[}
n
"
n
"
u
[
"
[
L™

U.S. Patent Jan. 2, 2018 Sheet 4 of 8

(START >

US 9,859,920 B2

READ DATA BLOCK AND/OR PACKET
AND READ REFERENCE BLOCK
AND/OR PACKET
402

READ DATA ELEMENT FROM DATA BLOCK
AND/OR PACKET AND READ REFERENCE
ELEMENT FROM REFERENCE BLOCK
AND/OR PACKET
404

DATA VALUE IS CHANGED?
| data — reference | > Threshold

YES

k 4

WRITE PREDEFINED SYMBOL WRITE VALUE OF DATA ELEMENT
TO ENCODED DATA (OR SET TO ENCODED DATA (AND
UNCHANGED BITTO OPTIONALLY SET CHANGED BIT
ANOTHER STREAM) TO ANOTHER STREAM)
408 410

Fig. 4A

U.S. Patent Jan. 2, 2018 Sheet 5 of 8 US 9,859,920 B2

NEXT
DATA BLOCK AND/OR
DATA PACKET EXISTS?
414

Fig. 4B

U.S. Patent Jan. 2, 2018 Sheet 6 of 8 US 9,859,920 B2

ENTROPY-DECODE DATA STREAM
OR DATA STREAMS
502

IDENTIFY UNCHANGED AND/OR CHANGED
ELEMENTS WITHIN DATA BLOCKS AND/OR
DATA PACKETS
504

DECODE UNCHANGED AND CHANGED
ELEMENTS IN DATA STREAM OR
DATA STREAMS
506

-
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
I‘_
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

ASSEMBLE DATA BLOCK AND/OR
DATA PACKET TO DECODED DATA
508

L YL L L]

Fig. 5

U.S. Patent

Jan. 2, 2018 Sheet 7 of 8

< START)

US 9,859,920 B2

RECEIVE DATA STREAM (AND OPTIONALLY
UNCHANGED/CHANGED BIT STREAM) FOR
DATA BLOCK AND/OR DATA PACKET AND READ
REFERENCE BLOCK AND/OR PACKET
602

READ DATA ELEMENT FROM DATA STREAM (OR
READ UNCHANGED/CHANGED BIT FROM BIT
STREAM) AND READ REFERENCE ELEMENT
FROM REFERENCE BLOCK AND/OR PACKET

604

YES DATA ELEMENT IS
PREDEFINED SYMBOL (OR BIT IS
UNCHANGED)?

606

WRITE VALUE OF REFERENCE
ELEMENT TO DECODED DATA
608

NO

(READ DATAELEMENT FROM
DATA STREAM AND)
WRITE VALUE OF DATA
ELEMENT TO DECODED DATA
610

Fig. 6A

U.S. Patent Jan. 2, 2018 Sheet 8 of 8 US 9,859,920 B2

NEXT
DATABLOCK AND/OR
DATA PACKET EXISTS?
614

Fig. 6B

US 9,859,920 B2

1
ENCODER AND DECODER

This application is a National Stage of PCT/EP2015/
025041, filed Jun. 26, 2015, which claims priority under 35
U.S.C. §119 to GB Application No. 1411451.6, filed Jun. 27,
2014, all of which are incorporated herein by reference in
their entirety.

TECHNICAL FIELD

The present disclosure relates generally to data compres-
sion, and more specifically, to encoders for encoding input
data (D1) to generate corresponding encoded data (E2), and
decoders for decoding the encoded data (E2) to generate
corresponding decoded data (D3). Moreover, the present
disclosure relates to methods of encoding input data (D1) to
generate corresponding encoded data (E2), and methods of
decoding the encoded data (E2) to generate corresponding
decoded data (D3). Furthermore, the present disclosure also
relates to computer program products comprising non-tran-
sitory (namely non-transient) computer-readable storage
media having computer-readable instructions stored thereon,
the computer-readable instructions being executable by a
computerized device comprising processing hardware to
execute the aforesaid methods. The present disclosure also
relates to codecs, including at least one aforementioned
encoder and at least aforementioned decoder.

BACKGROUND

It has become a customary contemporary practice to
compress data to reduce usage of resources, for example,
during data storage and data communication. During data
communication, a sequence of data blocks or data packets is
communicated from one device to another device. Data
blocks or data packets communicated later in the sequence
are often changed in comparison to data blocks or data
packets that have been communicated earlier. However,
changes in individual elements inside these changed data
blocks or data packets are considerably smaller than the
original content of the data blocks or data packets. In other
words, most of the elements inside the changed blocks are
unchanged in comparison to the earlier data blocks or data
packets. When such a sequence of data blocks or data
packets is compressed using conventional encoders, often
only a small compression ratio is achieved.

One conventional encoder-decoder (hereinafter referred
to as “coded”) has been described in US patent document
20120219065 Al, titled “Processing of Image”. The con-
ventional codec processes entire data blocks of an image or
data sequence, and compares the entire data blocks with
previous data blocks. The conventional codec encodes an
unchanged data block to a predefined colour value or data
value, and also encodes a changed data block as it is. This
means that all the original data values in a changed data
block are coded, and so a compression efficiency perfor-
mance provided by the conventional encoder-decoder is not
as great as potentially achievable.

In a patent document US2013/0315307A1 (Karkkainen et
al.), there is described an encoder that employs changed/
unchanged bits to express whether a corresponding data
block, for example inside an image frame, has changed or
not. Although such an approach functions well, it is feasible
to enhance its performance significantly.

Moreover, another conventional codec (http://en.wikipe-
dia.org/wiki/Delta encoding) employs delta coding for pro-
cessing data. In delta coding, a difference (namely, a delta

10

15

20

25

30

35

40

45

50

55

60

65

2

value) between a current data element and a previous data
element is written or transmitted. However, such delta
values often generate new data values that are potentially not
present in the data or otherwise enlarges the dynamic of the
data values, and therefore, an increase entropy of the data
thereby potentially arises.

Therefore, there exists a need for such a codec for
compressing data that is more efficient in comparison to the
conventional codecs.

SUMMARY

The present disclosure seeks to provide an improved
encoder for encoding input data (D1) to generate corre-
sponding encoded data (E2).

The present disclosure also seeks to provide an improved
decoder for decoding encoded data (E2) to generate corre-
sponding decoded data (D3).

Moreover, the present disclosure seeks to provide an
improved method of encoding input data (D1) to generate
corresponding encoded data (E2).

Moreover, the present disclosure also seeks to provide an
improved method of decoding encoded data (E2) to generate
corresponding decoded data (D3).

In a first aspect, embodiments of the present disclosure
provide an encoder including processing hardware for
encoding input data (D1) to generate corresponding encoded
data (E2), wherein the processing hardware is operable to
process the input data (D1) as data blocks and/or data
packets, characterized in that the processing hardware is
operable to:

(1) identify substantial reoccurrences of data blocks and/or
data packets within at least a portion of the input data
(D1), wherein the data blocks and/or data packets
include a corresponding plurality of elements, wherein
the elements include a plurality of bits;

(i) identify where elements are unchanged within the
substantially reoccurring data blocks and/or data pack-
ets, and/or where elements are changed within the
substantially reoccurring data blocks and/or data pack-
ets;

(ii1) encode unchanged elements in the encoded data (E2)
by employing at least one corresponding symbol or at
least one corresponding bit indicating an absence of
change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet and

(iv) encode changed elements in the encoded data (E2).

Optionally, the input data (D1) is in a form of at least one
of: text data, image data, video data, audio data, binary data,
sensor data, measurement data, graphical data, multi-dimen-
sional data and/or one-dimensional data, but not limited
thereto.

The present invention is of advantage in that encoding
performance is enhanced considerably by identifying and
encoding partial changes within data blocks and/or data
packets.

It will be appreciated that an element may optionally be
one of the following: a byte, a word, an integer, a character,
a pixel value, an audio sample amplitude in mono or stereo,
but not limited thereto. In other words, the element is usually
a single value, but sometimes it can be for example a pixel,
namely a type of picture data element which may also
contain a few data values meaning mutually different things,
similarly to stereo in case of audio data. Moreover, an
element pursuant to the present disclosure is either a value
or it contains a few values, and when change is detected, it

US 9,859,920 B2

3

is required anyway that those values can be processed either
together or separately. In practice, a pixel value, for example
its R (red), G (green) and B (blue) values, can either have
changed or unchanged, but it is also possible that only the R
value of the pixel has changed or unchanged. However, the
element cannot contain two corresponding values from a
same source, such as two R (red) values, namely Rsl and
Rs2 (wherein “s” has a meaning of a different spatial
location) for an image, or Atl and At2 (“t” meaning different
timing) in audio. Thus, the element must be defined spatially
and temporally, but it may not be bound to a source, for
example a sensor for color R (red), a sensor for color B
(blue), or first microphone for audio value Am1 and second
microphone for audio value Am2, or first and second cam-
era. In other words, the point in time is the same for various
different things, and the spatial location is the same for those
various different things, but their source may change; one
does not receive input from many different locations at a
same point in time, and to one and the same location at many
different points in time.

It will be appreciated that, in addition to pixels, the
element can also be, for example, a voxel, namely a pixel in
three dimensions, and they can of course be measured with
two cameras. Moreover, a texel is similar to a pixel, but it
refers to a texture element, or a texture pixel; it is a
fundamental unit of texture space, used in computer graph-
ics in drawing images in 2D or 3D onto a display using a
Graphics Processor Unit (GPU). Moreover, the element can
be, for example, a resel, a concept used in image analysis. It
describes the actual spatial image resolution in an image, or
a volume. Furthermore, many signals such as audio signals
may have several channels of data, and so forth. Other
examples of elements can include, for example, base pairs of
DNA or RNA in genomic data.

Optionally, a reference data block and/or a reference data
packet is a previous data block or data packet; a data block
or a packet in a similar location in a previous frame, a view
or a channel; a data block or a data packet described by a
motion vector (namely motion compensation); a data block
or a data packet described by symbol (namely deduplica-
tion); a data block or a data packet encoded with some
coding method (for example using coding methods such as
DC encoding, multilevel encoding, slide encoding, line
encoding, discrete cosine transform (DCT) encoding, data-
base encoding, vector quantization encoding, palette encod-
ing, interpolation encoding, extrapolation encoding).
Optionally, the at least one corresponding symbol is repre-
sented by a predetermined data value. Optionally, the pre-
determined data value is implemented as a zero data value.
Optionally, the unchanged value, for example when the
value of the bit is 0, and the changed value, for example
when the value of the bit is 1, are described by bits in a
separate data stream, and only the changed input data values
are encoded into the data stream.

Optionally, the processing hardware is operable to imple-
ment chunked transfer encoding for Hypertext Transfer
Protocol (HTTP) and/or Real-Time Messaging Protocol
(RTMP). More optionally, the HTTP and/or RTMP employ
fixed-size data blocks and/or data packets inside requests
and responses.

Optionally, the processing hardware is operable to encode
at least a portion of the changed elements in a quantized
manner in the encoded data (E2). Such a quantized manner
of operation is capable of providing an enhanced degree of
data compression.

When all the elements in a given data block or data packet
are unchanged as compared to a reference data block or data

20

25

30

40

45

55

60

65

4

packet, then, optionally, the data block or packet is set as
unchanged and then there is no need to deliver any other
information for that data block or data packet. Optionally,
the data blocks and data packets with all values changed are
also separated from partially changed data blocks or data
packets.

The method described in this disclosure is beneficially
used for encoding the partially changed data blocks or
packets, by way of encoding where changes have occurred
to one or more elements within the partially changed data
blocks or packets. Partially changed data blocks or packets
contain both changed and unchanged data values. Option-
ally, the method is also operable to encode changed data
blocks or packets. Optionally, the method is also operable to
encode unchanged data blocks or packets.

Moreover, optionally, the processing hardware is operable
to apply a compression algorithm to compress the encoded
data (E2), for example Range coding, SRLE (split run length
encoding)(for example as described in a patent
GB2507603B1 and also in a patent application PCT/
EP2014/000530), Delta coding, ODelta coding (for example
as described in a patent GB2511355B, and also in a patent
application PCT/EP2014/00510), EM (entropy modifying
encoding)(for example as described in a patent application
GB2511493A, and also in a patent application PCT/EP2014/
000529), Arithmetic coding, Huffman coding, but not lim-
ited thereto, to compress the encoded data (E2) to generate
compressed data (C4) which is included into the encoded
output data (E2). Such additional compression provided by
the compression algorithm is capable of further compressing
the encoded data (E2) relative to the input data (D1).

In a second aspect, embodiments of the present disclosure
provide a decoder including processing hardware for decod-
ing encoded data (E2) to generate corresponding decoded
data (D3),. wherein the processing hardware is operable to
process the encoded data (E2) as data blocks and/or data
packets, characterized in that the processing hardware is
operable to:

(1) decode the encoded data (E2) to generate data for
changed elements, the changed eclements being ele-
ments that are changed within substantial reoccur-
rences of data blocks and/or data packets within the
encoded data (E2);

(i1) decode the encoded data (E2) to generate data for
unchanged elements, the unchanged elements being
elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within
the encoded data (E2), wherein the unchanged elements
are represented by at least one corresponding symbol or
at least one corresponding bit indicating an absence of
change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet and

(ii1) assemble the data generated for the changed and
unchanged elements in (i) and (ii) into data blocks
and/or data packets to generate the decoded data (D3),
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits.

Optionally, the at least one corresponding symbol is
represented by a predetermined data value. More optionally,
the predetermined data value is implemented as a zero data
value.

Optionally, the processing hardware is operable to imple-
ment chunked transfer encoding for Hypertext Transfer
Protocol (HTTP) and/or Real-Time Messaging Protocol

US 9,859,920 B2

5

(RTMP). More optionally, the HTTP and/or RTMP employ
fixed-size data blocks and/or data packets inside requests
and responses.

Optionally, the processing hardware is operable to decode
at least a portion of the changed elements in a quantized
manner in the decoded data (D3).

Optionally, the processing hardware is operable to apply
a decompression algorithm to decompress compressed data
(C4) to generate the encoded data (E2) for decoding the
encoded data (E2) to generate the data for the changed and
unchanged elements.

Optionally, the decoded data (D3) is in a form of at least
one of: text data, image data, video data, audio data, binary
data, sensor data, measurement data, graphical data, multi-
dimensional data and/or one-dimensional data, but not lim-
ited thereto.

In a third aspect, embodiments of the present disclosure
provide a codec including the aforementioned encoder and
the aforementioned decoder. Optionally, the codec is in a
form of at least one of: a video codec, an audio codec, an
image codec and/or a data codec, but not limited thereto.

In a fourth aspect, embodiments of the present disclosure
provide a method of encoding input data (D1) to generate
corresponding encoded data (HE2), wherein the method
includes processing the input data (D1) as data blocks and/or
data packets, characterized in that the method includes:

(1) identifying substantial reoccurrences of data blocks
and/or data packets within at least a portion of the input
data (D1), wherein the data blocks and/or data packets
include a corresponding plurality of elements, wherein
the elements include a plurality of bits;

(ii) identifying where elements are unchanged within the
substantially reoccurring data blocks and/or data pack-
ets, and/or where elements are changed within the
substantially reoccurring data blocks and/or data pack-
ets;

(iii) encoding unchanged elements in the encoded data
(E2) by employing at least one corresponding symbol
or at least one corresponding bit indicating an absence
of change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet and

(iv) encoding changed elements in the encoded data (E2).

Optionally, the method includes encoding the input data
(D1) received in a form of at least one of: text data, image
data, video data, audio data, binary data, sensor data, mea-
surement data, graphical data, multi-dimensional data, uni-
dimensional data.

Optionally, the method includes representing the at least
one corresponding symbol by a predetermined data value.
More optionally, the predetermined data value is imple-
mented as a zero data value.

Optionally, the method includes implementing chunked
transfer encoding for Hypertext Transfer Protocol (HTTP)
and/or Real-Time Messaging Protocol (RTMP). More
optionally, the HTTP and/or RTMP employ fixed-size data
blocks and/or data packets inside requests and responses.
Optionally, the method includes encoding at least a portion
of the changed elements in a quantized manner in the
encoded data (E2).

Optionally, the method includes applying a compression
algorithm to compress the encoded data (E2) to generate
corresponding compressed data (C4).

In a fifth aspect, embodiments of the present disclosure
provide a computer program product comprising a non-
transitory (namely non-transient) computer-readable storage
medium having computer-readable instructions stored

20

25

30

35

40

45

50

55

60

65

6

thereon, the computer-readable instructions being execut-
able by a computerized device comprising processing hard-
ware to execute the aforementioned method.

In a sixth aspect, embodiments of the present disclosure
provide a method of decoding encoded data (E2) to generate
corresponding decoded data (D3), wherein the method
includes processing the encoded data (E2) as data blocks
and/or data packets, characterized in that the method
includes:

(1) decoding the encoded data (E2) to generate data for
changed elements, the changed eclements being ele-
ments that are changed within substantial reoccur-
rences of data blocks and/or data packets within the
encoded data (E2) ,

(i1) decoding the encoded data (E2) to generate data for
unchanged elements, the unchanged elements being
elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within
the encoded data (E2), wherein the unchanged elements
are represented by at least one corresponding symbol or
at least one corresponding bit indicating an absence of
change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet and

(ii1) assembling the data generated for the changed and
unchanged elements in steps (i) and (ii) into data blocks
and/or data packets to generate the decoded data (D3),
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits.

Optionally, the method includes generating the decoded
data (D3) in a form of at least one of: text data, image data,
video data, audio data, binary data, sensor data, measure-
ment data, graphical data, multi-dimensional data, uni-
dimensional data.

Optionally, the at least one corresponding symbol is
represented by a predetermined data value. More optionally,
the predetermined data value is implemented as a zero data
value.

Optionally, the method includes implementing chunked
transfer encoding for Hypertext Transfer Protocol (HTTP)
and/or Real-Time Messaging Protocol (RTMP). More
optionally, the HTTP and/or RTMP employ fixed-size data
blocks and/or data packets inside requests and responses.

Optionally, the method includes decoding at least a por-
tion of the changed elements in a quantized manner in the
decoded data (D3).

Optionally, the method includes applying a decompres-
sion algorithm to decompress compressed data (C4) to
generate the encoded data (E2) for decoding the encoded
data (E2) to generate the data for the changed and unchanged
elements.

In a seventh aspect, embodiments of the present disclo-
sure provide a computer program product comprising a
non-transitory (namely non-transient) computer-readable
storage medium having computer-readable instructions
stored thereon, the computer-readable instructions being
executable by a computerized device comprising processing
hardware to execute the aforementioned method.

Embodiments of the present disclosure substantially
eliminate, or at least partially address, the aforementioned
problems in the prior art, and enable lossless or near-lossless
data compression of one-dimensional image data or multi-
dimensional image data, video data, audio data and any
other type of data with a high compression ratio.

Additional aspects, advantages, features and objects of the
present disclosure are made apparent in the drawings and the

US 9,859,920 B2

7

detailed description of the illustrative embodiments con-
strued in conjunction with the appended claims that follow.

It will be appreciated that features of the present disclo-
sure are susceptible to being combined in various combina-
tions without departing from the scope of the present dis-
closure as defined by the appended claims.

DESCRIPTION OF THE DRAWINGS

The summary above, as well as the following detailed
description of illustrative embodiments, is better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the present disclosure, exemplary
constructions of the disclosure are shown in the drawings.
However, the present disclosure is not limited to specific
methods and apparatus disclosed herein. Moreover, those in
the art will understand that the drawings are not to scale.
Wherever possible, like elements have been indicated by
identical numbers.

Embodiments of the present disclosure will now be
described, by way of example only, with reference to the
following diagrams wherein:

FIG. 1 is a schematic illustration of an example network
environment that is suitable for practicing embodiments of
the present disclosure;

FIG. 2 is an illustration of an example data flow, in
accordance with an embodiment of the present disclosure;

FIG. 3 is an illustration of steps of a method of encoding
input data (D1) to generate corresponding encoded data
(E2), in accordance with an embodiment of the present
disclosure;

FIGS. 4A and 4B collectively are an illustration of steps
of an encoding processing, in accordance with an embodi-
ment of the present disclosure;

FIG. 5 is an illustration of steps of a method of decoding
the encoded data (E2) to generate corresponding decoded
data (D3), in accordance with an embodiment of the present
disclosure; and

FIGS. 6A and 6B collectively are an illustration of steps
of a decoding processing, in accordance with an embodi-
ment of the present disclosure.

In the accompanying drawings, an underlined number is
employed to represent an item over which the underlined
number is positioned or an item to which the underlined
number is adjacent. A non-underlined number relates to an
item identified by a line linking the non-underlined number
to the item. When a number is non-underlined and accom-
panied by an associated arrow, the non-underlined number is
used to identify a general item at which the arrow is
pointing.

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description illustrates embodi-
ments of the present disclosure and ways in which they can
be implemented. Although the best mode of carrying out the
present disclosure has been disclosed, those skilled in the art
would recognize that other embodiments for carrying out or
practicing the present disclosure are also possible.

Embodiments of the present disclosure provide an
encoder including processing hardware for encoding input
data (D1) to generate corresponding encoded data (E2). The
processing hardware is operable to process the input data
(D1) as data blocks and/or data packets. Optionally, the input
data (D1) is in a form of at least one of: text data, image data,
video data, audio data, binary data, sensor data, measure-

10

15

20

25

30

35

40

45

50

55

60

65

8

ment data, graphical data, genomic data, multi-dimensional
data and/or one-dimensional data, but not limited thereto.

The processing hardware is operable to identify substan-
tial reoccurrences of data blocks and/or data packets within
the input data (D1). The processing hardware is then oper-
able to identify where elements are unchanged within the
substantially reoccurring data blocks and/or data packets,
and/or where elements are changed within the substantially
reoccurring data blocks and/or data packets.

Subsequently, the processing hardware is operable to
encode unchanged elements in the encoded data (E2) by
employing at least one corresponding symbol, or at least one
corresponding bit, for example a single bit, indicating an
absence of change in the unchanged elements relative to
corresponding elements in a reference data block and/or data
packet. Optionally, the at least one corresponding symbol is
represented by a predetermined data value. Optionally, the
predetermined data value is implemented as a zero data
value. Optionally, the unchanged value, for example when
the bit value is 0, and the changed value, for example when
the bit value is 1, are described by bits in a separate bit
stream and only the changed input data values are encoded
to the data stream. By “channel” is meant at least one of: a
channel-defined portion of the encoded data (E2), a channel-
defined separate stream of data, a channel-defined separate
data file.

Moreover, the processing hardware is operable to encode
changed elements in the encoded data (E2). Optionally, the
processing hardware is operable to encode at least a portion
of the changed elements in a quantized manner in the
encoded data (E2).

Moreover, optionally, the processing hardware is operable
to apply a compression algorithm, for example Range cod-
ing, SRLE, Delta coding, ODelta coding, EM (entropy
modifying) coding, Arithmetic coding, Huffman coding, but
not limited thereto, to compress the encoded data (E2) to
generate compressed data (C4) which is included into the
encoded output data (E2).

Furthermore, embodiments of the present disclosure also
provide a decoder including processing hardware for decod-
ing encoded data (E2) to generate corresponding decoded
data (D3). The processing hardware is operable to process
the encoded data (E2) as data blocks and/or data packets.

The processing hardware is operable to decode the
encoded data (E2) to generate data for elements that are
changed (hereinafter referred to as “changed elements™)
within substantial reoccurrences of data blocks and/or data
packets within the encoded data (E2). Optionally, the pro-
cessing hardware is operable to decode at least a portion of
the changed elements in a quantized manner in the decoded
data (D3). By “quantized manner” is meant that the changed
elements are decoded into data, wherein the decoded data is
selected from a finite number of possible values for the data,
namely the decoded data changes in a non-continuous
manner.

The processing hardware is operable to decode the
encoded data (E2) to generate data for elements that are
unchanged (hereinafter referred to as “unchanged ele-
ments”) within the substantial reoccurrences of data blocks
and/or data packets within the encoded data (E2). In the
encoded data (E2), the unchanged elements are represented
by at least one corresponding symbol, or at least one
corresponding bit, for example a single bit, indicating an
absence of change in the unchanged elements relative to
corresponding elements in a reference data block and/or data
packet.

US 9,859,920 B2

9

Optionally, the processing hardware is operable to apply
a decompression algorithm to decompress compressed data
(C4) present in the encoded data (E2) for use in decoding the
encoded data (E2) to generate the data for the changed and
unchanged elements.

Moreover, the processing hardware is operable to
assemble the data generated for the changed and unchanged
elements into data blocks and/or data packets to generate the
decoded data (D3).

Optionally, the decoded data (D3) is in a form of at least
one of: text data, image data, video data, audio data, binary
data, sensor data, measurement data, graphical data,
genomic data, multi-dimensional data and/or one-dimen-
sional data, but not limited thereto.

Furthermore, embodiments of the present disclosure also
provide a codec including the aforementioned encoder and
the aforementioned decoder. Optionally, the codec is in a
form of at least one of: a video codec, an audio codec, an
image codec and/or a data codec, but not limited thereto.

Moreover, optionally, the encoder and the decoder are
operable to implement chunked transfer encoding for Hyper-
text Transfer Protocol (HTTP) and/or Real-Time Messaging
Protocol (RTMP). Optionally, the HTTP and/or RTMP
employ fixed-size data blocks and/or data packets inside
requests and responses to the requests.

Referring now to the drawings, particularly by their
reference numbers, FIG. 1 is a schematic illustration of an
example network environment 100 that is suitable for prac-
ticing embodiments of the present disclosure. The network
environment 100 includes an encoder 102 and one or more
electronic devices, depicted as an electronic device 104 in
FIG. 1. The network environment 100 also includes a
communication network 106, and one or more data servers
and/or data storages and one or more databases, depicted as
a data server and/or data storage 108 and a database 110 in
FIG. 1. Additionally, the network environment 100 includes
a decoder 112 and one or more computerized devices,
depicted as a computerized device 114 in FIG. 1. Optionally,
the network environment 100 includes one or more data-
bases and/or one or more local data memories (116, 118)
which are spatially local to devices of the network environ-
ment 100.

The network environment 100 is optionally implemented
in various ways, depending on various possible scenarios. In
one example scenario, the network environment 100 is
optionally implemented by way of a spatially collocated
arrangement of the data server and/or data storage 108 and
the database 110 coupled mutually in communication via a
direct connection, for example, as shown in FIG. 1. In
another example scenario, the network environment 100 is
optionally implemented by way of a spatially distributed
arrangement of the data server and/or data storage 108 and
the database 110 coupled mutually in communication via a
communication network, such as the communication net-
work 106. In yet another example scenario, the data server
and/or data storage 108 and the database 110 are optionally
implemented via cloud computing services. Optionally, the
network environment 100 is implemented in a distributed
peer-to-peer (P2P) manner.

The data server and/or data storage 108 is coupled in
communication with the encoder 102 and the decoder 112,
via the communication network 106 or via a direct connec-
tion. Moreover, the encoder 102 is coupled in communica-
tion with the decoder 112, via the communication network
106 or via a direct connection.

The communication network 106 is optionally a collec-
tion of individual networks, interconnected with each other

10

15

20

25

30

35

40

45

50

55

60

65

10

and functioning as a single large network. Such individual
networks are optionally wired, wireless, or a combination
thereof. Examples of such individual networks include, but
are not limited to, Local Area Networks (LANs), Wide Area
Networks (WANSs), Metropolitan Area Networks (MANSs),
Wireless LANs (WLANs), Wireless WANs (WWANs),
Wireless MANs (WMANS), the Internet, second generation
(2G) telecommunication networks, third generation (3G)
telecommunication networks, fourth generation (4G) tele-
communication networks, and Worldwide Interoperability
for Microwave Access (WiMAX) networks.

The electronic device 104 provides the encoder 102,
either directly or through the communication network 106,
which has input data (D1) as an input thereto. Optionally, the
input data (D1) is in a form of at least one of: text data,
image data, video data, audio data, binary data, sensor data,
measurement data, graphical data, genomic data, multi-
dimensional data and/or one-dimensional data, but not lim-
ited thereto. The input data (D1) is optionally modified data,
apart of an entire data sequence, or a combination of various
types of data. Optionally, the input data (D1) is received as
a stream or as a file.

The encoder 102 includes processing hardware that is
operable to execute computer-readable instructions stored
on a non-transitory (namely non-transient) computer-read-
able storage medium for encoding the input data (D1) to
generate corresponding encoded data (E2). Alternatively, or
additionally, the processing hardware is hardwired, for
example implemented by way of an application-specific
integrated circuit (ASIC), a state-variable machine or simi-
lar.

Optionally, the encoder 102 is implemented as a part of
the electronic device 104. In this case, the processing
hardware of the encoder 102 is included in the electronic
device 104. In an example, the electronic device 104 is an
image and/or video capturing device that generates in opera-
tion large quantities of image and/or video data, wherein a
lossless compression is desired so as to preserve fine infor-
mation in the image and/or video data, whilst rendering the
quantities of the image and/or video data manageable for
data storage purposes. Examples of such image and/or video
capturing devices include, but are not limited to, surveil-
lance cameras, video recorders, X-ray devices, Magnetic
Resonance Imaging (MRI) scanners, and ultrasound scan-
ners. The electric device 104 is beneficially implemented
using Reduced Instruction Set Computing (RISC) proces-
sors that are capable of performing data manipulations
associated with methods of the present disclosure in a highly
efficient manner, while simultaneously being very energy
efficient.

Alternatively, optionally, the encoder 102 is implemented
independently, for example, using a computerized device
that includes the processing hardware of the encoder 102.

Upon receiving the input data (D1), the processing hard-
ware of the encoder 102 is operable to process the input data
(D1) as data blocks and/or data packets. Optionally, these
data blocks and/or data packets have a fixed size. Alterna-
tively, the data blocks and/or data packets have a variable
size; optionally, the variable size is determined as a function
of content and/or format of the input data (D1). Optionally,
the content is automatically analyzed by employing a com-
bination of spatial Fourier analysis and temporal Fourier
analysis for computing one or more parameters for deter-
mining the variable size of the data blocks and/or data
packets. Fourier transforms, for example Fast Fourier Trans-
form (FFT), are known to a person skilled in the art, and are

US 9,859,920 B2

11

optionally implemented in a recursive manner, for example
using one or more RISC processors.

The processing hardware of the encoder 102 is operable
to identify substantial reoccurrences of data blocks and/or
data packets within the input data (D1), namely, substan-
tially similar data blocks and/or data packets within the input
data (D1). The processing hardware of the encoder 102 is
then operable to identify where elements are unchanged
within the substantially reoccurring data blocks and/or data
packets, and/or where elements are changed within the
substantially reoccurring data blocks and/or data packets.

Subsequently, the processing hardware of the encoder 102
is operable to encode, in the encoded data (E2), unchanged
elements within each data block and/or data packet by
employing at least one corresponding symbol or one or more
corresponding bits, for example a single bit, indicating an
absence of change in the unchanged elements within that
data block and/or data packet relative to corresponding
elements within its corresponding reference data block and/
or data packet. In this regard, a “MemoryCompare” func-
tionality is optionally used to compare elements of a given
data block and/or data packet with elements of a reference
data block and/or data packet.

Optionally, the reference data block and/or data packet is
fixed. In an example, the reference data block and/or data
packet is similar for all of the data blocks and/or data packets
of'the input data (D1). In another example, the reference data
block and/or data packet is similar for at least a subset of the
data blocks and/or data packets of the input data (D1).

Alternatively, optionally, the reference data block and/or
data packet changes, based on certain criteria, as will be
elucidated below. In an example, when a number of changed
elements within a given data block and/or data packet and
another block and/or data packet is less than a predefined
threshold number, then the given data block and/or data
packet can be taken as a reference data block and/or data
packet for any data block and/or data packet in the input data
(D1). In another example, a previous data block and/or data
packet is taken as a reference data block and/or data packet
for a current data block and/or data packet in the input data
(D1). Optionally, the previous data block and/or data packet
is a data block and/or data packet after which the current
data block consecutively followed. Alternatively, optionally,
the previous data block and/or data packet is a data block
and/or data packet that occurred in a previous frame, view
or channel. Yet alternatively, optionally, the previous data
block and/or data packet is a data block and/or data packet
that was known or selected beforehand. Yet alternatively,
optionally, the information of the selected previous data
block and/or data packet is delivered with a symbol or
reference number describing it or with, for example, a
motion vector describing the selected data block and/or data
packet.

Optionally, the at least one corresponding symbol is
represented by a predetermined data value. Optionally, the
predetermined data value is determined based on an analysis
of data values of changed elements of the data blocks and/or
data packets of the input data (D1); such analysis is per-
formed, for example by performing a statistical analysis of
element values within data blocks present in the input data
(D1); such analysis provides “identification” pursuant to the
present disclosure. Optionally, the predetermined data value
is implemented as a zero data value. Alternatively, option-
ally, bits are used to describe changed and unchanged data
values in a data block or packet and are sent to another
stream, and in such a case, only the changed data values are
optionally encoded to the data stream.

20

30

40

45

55

12

Moreover, the processing hardware of the encoder 102 is
operable to encode the changed elements in the encoded data
(E2). Optionally, for a lossless operation, the processing
hardware of the encoder 102 is operable to encode the
changed elements in their original form in the encoded data
(E2). Alternatively, optionally, for a lossy operation, the
processing hardware of the encoder 102 is operable to
encode at least a portion of the changed elements in a
quantized manner in the encoded data (E2).

Yet alternatively, optionally, for a near-lossless operation,
the processing hardware of the encoder 102 is operable to
encode at least some portion of the changed elements in a
quantized manner in the encoded data (E2). For this purpose,
the processing hardware of the encoder 102 is optionally
operable to quantize only some portions of the changed
elements, based on an analysis of content, type and/or
composition of the input data (D1); such an analysis is
operable, for example to determine an occurrence of regions
of interest in the input data (D1) which are beneficially
encoded with better or worse quality than other regions of
interest. Optionally, if the input data is medical, military,
binary, text or similar data, then it beneficially must be coded
losslessly, but if the input data is audio, video, still images
and so forth, then lossy coding is beneficially allowed as
well. Of course, there potentially occur regions of interest in
the input data (D1) which are beneficially encoded with
better or worse quality than other regions of interest. Con-
sequently, the encoder 102 is capable of adaptively varying
a compression ratio of lossily encoded data by changing the
quantization between the input data (D1) and the encoded
data (E2).

Moreover, optionally, the processing hardware of the
encoder 102 is operable to apply a compression algorithm to
compress the encoded data (E2) to generate compressed data
(C4). In this regard, the encoder 102 is beneficially useable
with any contemporary entropy encoders; for example
encoders utilizing Range coding, SRLE, Delta coding,
ODelta coding, EM, Arithmetic coding, Huffman coding.

Furthermore, the encoder 102 is operable to communicate
the encoded data (E2) to the data server and/or data storage
108 for storing in the database 110. The data server and/or
data storage 108 is arranged to be accessible to the decoder
112, either via the communication network or via a direct
connection, which is beneficially compatible with the
encoder 102, for subsequently decoding the encoded data
(E2). In an example where the compression algorithm is
applied to compress the encoded data (E2) to generate the
compressed data (C4), the encoder 102 communicates the
compressed data (C4) in the encoded data (E2) to the data
server and/or data storage 108 either via a communication
network or via a direct connection for storing in the database
110.

In some examples, the decoder 112 is optionally operable
to access the encoded data (E2) or the compressed data (C4)
from the data server and/or data storage 108. In alternative
examples, the encoder 102 is optionally operable to stream
the encoded data (E2) or the compressed data (C4) to the
decoder 112, either via the communication network 106 or
via a direct connection. Optionally, in addition, a data file
can be produced as output of the encoder 102 and used as
input for the decoder 112. Moreover, it will be appreciated
that a device equipped with a hardware or software encoder
can also communicate directly with another device equipped
with a hardware or software decoder. In yet other alternative
examples, the decoder 112 is optionally implemented so as
to retrieve the encoded data (E2) or the compressed data

US 9,859,920 B2

13

(C4) from a non-transitory (namely non-transient) com-
puter-readable storage medium, such as a hard drive and a
Solid-State Drive (SSD).

The decoder 112 includes processing hardware that is
operable to execute computer-readable instructions stored
on a non-transitory (namely non-transient) computer-read-
able storage medium for decoding the encoded data (E2) to
generate corresponding decoded data (D3).

Optionally, the decoder 112 is implemented as a part of
the computerized device 114. In this case, the processing
hardware of the decoder 112 is included in the computerized
device 114. Examples of the computerized device 114
include, but are not limited to, a mobile phone, a smart
telephone, a Mobile Internet Device (MID), a tablet com-
puter, an Ultra-Mobile Personal Computer (UMPC), a phab-
let computer, a Personal Digital Assistant (PDA), a web pad,
a Personal Computer (PC), a handheld PC, a laptop com-
puter, a desktop computer, a large-sized touch screen with an
embedded PC, and an interactive entertainment device, such
as a game console, a video player, a Television (TV) set and
a Set-Top Box (STB).

Alternatively, optionally, the decoder 112 is implemented
independently, for example, using another computerized
device that includes the processing hardware of the decoder
112.

When required, the processing hardware of the decoder
112 is operable to decode the encoded data (E2) to generate
the corresponding decoded data (D3). In this regard, the
processing hardware of the decoder 112 is operable to
process the encoded data (E2) as data blocks and/or data
packets.

The processing hardware of the decoder 112 is operable to
decode the encoded data (E2) to generate data for the
changed elements within the substantially reoccurring data
blocks and/or data packets within the encoded data (E2).
Optionally, for a lossless operation, the processing hardware
of the decoder 112 is operable to decode the changed
elements to their original form in the decoded data (D3).
Alternatively, optionally, for a lossy operation, the process-
ing hardware of the decoder 112 is operable to decode at
least a portion of the changed elements in a quantized
manner in the decoded data (D3); optionally, the quantized
manner of decoding employs a quantization which is vari-
able, for example depending upon a format or type of data
present in the encoded data (E2), wherein such variable
quantization is capable on reducing power consumption in
decoders, which is important for low-power portable
devices, for example battery-powered devices. Yet alterna-
tively, optionally, for a near-lossless operation, the process-
ing hardware of the decoder 112 is operable to decode at
least some portion of the changed elements in a quantized
manner in the decoded data (D3).

Moreover, the processing hardware of the decoder 112 is
operable to decode the encoded data (E2) to generate data
for the unchanged elements within the substantially reoc-
curring data blocks and/or data packets within the encoded
data (E2). In the encoded data (E2), the unchanged elements
are represented by the at least one corresponding symbol, or
at least one corresponding bit, for example a single bit,
indicating the absence of change in the unchanged elements
relative to corresponding elements in a reference data block
and/or data packet, as described earlier. Accordingly, option-
ally, the processing hardware of the decoder 112 is operable
to identify where the at least one corresponding symbol, or
at least one corresponding bit, for example a single bit, has
occurred within a given data block and/or data packet of the
encoded data (E2), and to replace the at least one corre-

10

15

20

25

30

35

40

45

50

55

60

65

14

sponding symbol, or alternatively, to set at least one data
value to the position of the corresponding bit in the data
block and/or data packet with corresponding elements in the
reference data block and/or data packet.

In an example where the decoder 112 is provided with the
compressed data (C4), the processing hardware of the
decoder 112 is operable to apply a decompression algorithm
to decompress the compressed data (C4) to generate the
encoded data (E2) for decoding the encoded data (E2) to
generate the data for the changed and unchanged elements.

Moreover, the processing hardware of the decoder 112 is
operable to assemble the data generated for the changed and
unchanged elements into data blocks and/or data packets to
generate the decoded data (D3). Optionally, the decoded
data (D3) so generated is in a form of at least one of: text
data, image data, video data, audio data, binary data, sensor
data, measurement data, graphical data, genomic data, multi-
dimensional data and/or one-dimensional data, but not lim-
ited thereto.

Subsequently, optionally, the decoder 112 is operable to
send the decoded data (D3) to the computerized device 114.

Furthermore, optionally, the encoder 102 and the decoder
112 are arranged to be implemented in a codec. Optionally,
the codec is in a form of at least one of: a video codec, an
audio codec, an image codec and/or a data codec, but not
limited thereto. The codec optionally is used in portable
electronic devices such as digital cameras, mobile tele-
phones, smart phones, surveillance equipment and such like.

Moreover, optionally, the encoder 102 and the decoder
112 are operable to implement chunked transfer encoding
for Hypertext Transfer Protocol (HTTP) and/or Real-Time
Messaging Protocol (RTMP). Optionally, the HTTP and/or
RTMP employ fixed-size data blocks and/or data packets
inside requests and responses to the requests. Typically, the
RTMP resets a size of the data block and/or data packets
during a communication session periodically, based on a
response time and capacity of a communication network.

FIG. 1 is merely an example, which should not unduly
limit the scope of the claims herein. It is to be understood
that the specific designation for the network environment
100 is provided as an example and is not to be construed as
limiting the network environment 100 to specific numbers,
types, or arrangements of encoders, electronic devices,
decoders, computerized devices, data servers and/or data
storages, databases, and communication networks. A person
skilled in the art will recognize many variations, alterna-
tives, and modifications of embodiments of the present
disclosure.

FIG. 2 is an illustration of an example data flow, in
accordance with an embodiment of the present disclosure.
For illustration purposes, an example will be described
wherein the electronic device 104 is an Internet Protocol (IP)
camera that has been employed at a facility for implement-
ing a remote surveillance system, for example, for detecting
intruders and/or for detecting hazardous events, such as fire,
flooding, and the like.

The IP camera is operable to provide the encoder 102 with
sensor data as sensed by one or more image sensors included
within the IP camera. In this example, the sensor data
includes one-dimensional image data or-multi-dimensional
image data and/or video data and/or other types of data.

Moreover, in operation, a video captured by the electronic
device 104 is streamed to the computerized device 114 so as
to be viewed by a user associated therewith.

In the example data flow, the input data (D1) is an original
video captured by an IP camera. The input data (D1) is
typically large in size; and therefore, requires a large data

US 9,859,920 B2

15

storage space for storing it in the database 110 and a large
network bandwidth for transferring it via the communication
network 106 or via a direct connection.

In order to encode the input data (D1) to the encoded data
(E2), the processing hardware of the encoder 102 is operable
to analyze content, type and/or composition of the input data
(D1). Based on the analysis, the processing hardware of the
encoder 102 is operable to divide image frames, views, or
channels of the video into a plurality of data blocks. The
analysis beneficially involves, for example, computing a
spectrum of changes occurring in the input data (D1), for
example a spectrum of temporal rates of change in the input
data (D1), and also an analysis of spatial portions of tem-
poral sequences of images and their associated rates of
change in the input data (D1). Beneficially, the analysis is
operable to find periodicities in the data, namely recurring
configurations of data, and where such periodicity is found,
then it is advantageous to conduct the division of the data to
blocks or packets based on such periodicity.

Optionally, each image frame, view or channel is divided
into the data blocks in a similar manner. This is particularly
beneficial for enabling selection of reference data blocks in
previous image frames, views or channels.

This method is optionally used with a deduplication
method or a block encoder (for example as described in a
patent GB2503295B), and a corresponding block decoder
(for example as described in a patent application
GB1214400.2), that are operable to detect reoccurrences,
namely selecting a suitable reference block, and to store and
update the reference data blocks and/or data packets. These
methods further are operable to split the data into suitable
data blocks and/or data packets, and to combine the data
blocks and/or data packets back to generate the decoded data
(D3). Optionally, a block encoder is used to generate data
streams that are then encoded with a deduplication method,
for example as described in the foregoing.

Optionally, the data blocks are rectilinear in relation to
areas of data frames represented by these data blocks, for
example, 64x64 elements, 32x16 elements, 4x20 elements,
10x4 elements, 1x4 elements, 3x1 elements, 8x8 elements,
1x1 element and so on. However, it will be appreciated here
that other shapes of data blocks can alternatively be
employed, for example, such as triangular, hexagonal, ellip-
tical and circular. In one example, the input data (D1)
corresponds to an image of billowing smoke or flames, or a
turbulent water flow that includes multiple curved image
components that are inefficiently represented by rectilinear
data blocks, but map efficiently onto elliptical and circular
data blocks, thereby providing potentially a higher degree of
data compression. Moreover, the term ‘data block’ option-
ally refers to a data block as well as data segments included
within the data block, throughout the present disclosure.

Optionally, the data blocks have a predefined size. The
predefined size is optionally either user-defined or system-
defined by default. Optionally, the predefined size is defined
by the encoder 102 based on the analysis of the content, type
and/or composition of the input data (D1), as described in
the foregoing. Optionally, the data blocks have a fixed size.
Therefore, the size of the data blocks is either known to the
decoder 112 or transmitted only once to the decoder 112.
When the data blocks have a fixed size, header information
describing the size of the data blocks is not required to be
written or transmitted, thereby enabling greater data com-
pression to be achieved.

Moreover, optionally, the processing hardware of the
encoder 102 is operable to define reference data blocks of a
reference frame corresponding to data blocks of a first image

25

40

45

55

16

frame, or data block or data packet, of the video. For this
purpose, the processing hardware of the encoder 102 is
operable to reset data values of elements of the reference
data blocks or data packets to a predetermined data value.
Optionally, the predetermined data value is implemented as
a zero data value.

Alternatively, optionally, the processing hardware of the
encoder 102 is operable to write or transmit the first image
frame, or data block or data packet, as it is, and to define the
data blocks of the first image frame as the reference data
blocks for a next image frame. In an example, for a given
data block in a current image frame, a reference data block
is selected to be a data block that is at a position in a previous
image frame that is similar to a position of the given data
block in the current image frame. In this example, data
values of the previous image frame are required to be stored
in memory, instead of data values of the reference data
block.

For a given data block, the processing hardware of the
encoder 102 is operable to process through data values of all
elements of the given data block, and to compare the data
values of the elements of the given data block with data
values of corresponding elements of its corresponding ref-
erence data block.

Optionally, for a lossless operation, the data values are
read without quantization. If a data value of a particular
element of the given data block is different from a data value
of'a corresponding element of the reference data block, that
particular element is considered a changed element. Other-
wise, if the data value of the particular element of the given
data block is identical, or optionally substantially identical,
to the data value of the corresponding element of the
reference data block, that particular element is considered an
unchanged element.

Alternatively, optionally, for a lossy operation, the data
values are quantized before the comparison is made. If a
difference between a quantized data value of a particular
element of the given data block and a quantized data value
of a corresponding element of the reference data block is
greater than a predefined threshold value, that particular
element is considered a changed element. Otherwise, if the
difference between the quantized data values is smaller or
equal to the predefined threshold value, that particular
element is considered an unchanged element. Optionally, the
predefined threshold value is based on a quality level set for
the lossy operation. The better the quality that is required,
the smaller threshold value that is used. The predefined
threshold is zero for lossless operation.

Subsequently, the processing hardware of the encoder 102
is operable to encode, in the encoded data (E2), unchanged
elements of the given data block using at least one corre-
sponding symbol, or at least one corresponding bit, for
example a single bit, as described earlier. Additionally, the
processing hardware of the encoder 102 is operable to
encode the changed elements in the encoded data (E2), as
described earlier.

Additionally, optionally, the processing hardware of the
encoder 102 is operable to write data values of the changed
elements to the current or new reference data block. Thus,
the reference data block is optionally also used for a next
data block, or next data blocks.

In this manner, the processing hardware of the encoder
102 is operable to encode the data blocks of the input data
(D1) in the encoded data (E2). The encoder 102 then
communicates the encoded data (E2) to the decoder 112, as
shown in FIG. 2.

US 9,859,920 B2

17

Next, in order to decode the encoded data (E2) to generate
the corresponding decoded data (D3), the processing hard-
ware of the decoder 112 is operable to identify occurrences
of the at least one corresponding symbol or one correspond-
ing bit within a given data block within the encoded data
(E2), and to replace the at least one corresponding symbol
or set the data value in the position of the corresponding bit
in a data block and/or data packet with corresponding
elements in the reference data block.

Subsequently, the processing hardware of the decoder 112
is operable to assemble data generated for the changed and
unchanged elements, to generate the decoded data (D3).

Subsequently, the decoder 112 sends the decoded data
(D3) to the computerized device 114. Continuing from the
aforementioned example of the data flow where the input
data (D1) is the original video, the user is presented the
video on a display screen of the computerized device 114.

Moreover, the encoder 102 optionally streams the
encoded data (E2) to the decoder 112, whilst concurrently
encoding the input data (D1) in real time. This is particularly
beneficial in a situation where source data is encoded at a
multimedia server in real time for streaming to users, for
example, for Internet-delivered multimedia services.

FIG. 2 is merely an example, which should not unduly
limit the scope of the claims herein. A person skilled in the
art will recognize many variations, alternatives, and modi-
fications of embodiments of the present disclosure.

In another example, the encoder 102 and/or the decoder
112 are implemented in a similar manner to encode audio
data, wherein the audio data may be divided into a plurality
of data packets and/or data sections. The term ‘data packet
and/or data section’ is synonymous with the term ‘data block
and/or data packet’, but pertains to audio data rather than
image and/or video data. Optionally, the processing hard-
ware of the encoder 102 is operable to concurrently encode
audio data along with image and/or video data. When audio
signals include tones which are sustained over many cycles
of audio signal and/or the music is rhythmic in nature with
substantially repetitive rhythmical patterns, such audio sig-
nals are efficiently compressed using encoding methods of
the present disclosure. Most contemporary popular music
tends to be repetitively rhythmic in nature.

However, it will be appreciated that the encoder 102 can
be used to encode other types of data in a similar manner, for
example, including at least one of: economic data, measure-
ment data, seismographic data, analog-to-digital converted
data, biomedical signal data, textural data, calendar data,
mathematical data, genomic data and binary data, but not
limited thereto.

The encoder 102 and the decoder 112 are suitable for
various types of data, because a majority of data being
processed or encoded has been produced in a machine
language by machines, and therefore, is divisible to data
blocks and/or data packets.

Moreover, principal traffic in communication networks
includes transmitting requests and responses to requests.
This means data bytes are sent back and forth. These data
bytes mostly contain partially or entirely similar IP packet
data. Therefore, the encoder 102 and the decoder 112 are
well-suited for communication protocols used in transfer-
ring data packets.

For illustration purposes only, there will next be consid-
ered an example wherein the input data (D1) includes five
Transmission Control Protocol/Internet Protocol (TCP/IP)
frames, represented as following:

10

15

20

25

30

35

40

45

50

55

60

65

18

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 78 fa 40 00 76 06 ce 63 3e fl ¢l 34 ac 10
11 3¢ 22 ¢9 ¢ de bd 1f b7 03 1f fe cO 92 350 10
00 fe b9 09 00 00

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 0d 40 00 76 06 ce 50 3e fl ¢l 34 ac 10
11 3¢ 22 9 ¢0 de bd If b7 03 1f fe ¢9 cc 50 10
01 02 af ¢ 00 00

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 11 40 00 76 06 ce 4c 3e fl ¢l 34 ac 10
11 3¢ 22 ¢9 ¢ de bd 1f b7 03 1f fe dl 41 350 10
01 02 a& 57 00 00

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 19 40 00 76 06 ce 44 3e fl ¢l 34 ac 10
11 3¢ 22 ¢9 ¢ de bd 1f b7 03 1f fe dd a4 350 10
01 02 9 4 00 00

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 43 40 00 76 06 ce la 3e fl ¢l 34 ac 10
11 3¢ 22 ¢9 ¢ de bd 1f b7 03 1f fe e9 95 350 10
01 02 90 03 00 00

In the example, the five TCP/IP frames have been ran-
domly selected from numbers #185 to #198. These TCP/IP
frames require a total of 270 bytes (=2160 bits) for com-
municating over a communication network.

In operation, the processing hardware of the encoder 102
processes the TCP/IP frames as individual data blocks, and
encodes them in the encoded data (E2), represented as
following:

In this example, the data value ‘00’ represents at least one
corresponding symbol indicating an absence of change in
unchanged elements relative to corresponding elements in a
reference data block. Although the data value ‘00’ is also
present in the input data (D1), it does not cause any problems
in this example, because no changed data value is repre-
sented by 00°. Often, there is a need to use a symbol for
unchanged data elements that is not present in the input data
(D1). Optionally, unchanged/changed decision bits can be
delivered with the changed data values instead of delivering
the predefined symbols for unchanged data and the changed
data values.

It is evident that the encoded data (E2) has low entropy,
in comparison to the input data (D1). When the encoded data
(E2) is entropy-coded with an advanced range coding
method that is based on arithmetic compression, compressed
data (C4) so generated requires only 113 bytes (=904 bits)
for communicating over the communication network. Cor-
respondingly, when the input data (D1) is entropy-coded in
a similar manner, compressed input data so generated
requires 253 bytes (=2024 bits). Thus, an amount of data to

US 9,859,920 B2

19
be communicated over the communication network is
reduced by 140 bytes (253-113), namely, by 55.3%. The
original amount of input data (D1) without any compression
is 270 bytes.

In another example, there are processed two first frames
of the previous example by using quantization and bits
describing the unchanged/changed decision. Quantization is
applied by using the divider value ‘2’, and dequantization by
using the multiplier value ‘2°. The threshold for changed
values is ‘1°, and the changed values are expressed with the
bit value ‘1°, and the unchanged values with the bit value
‘0’. The original data frames are as follows:

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 78 fa 40 00 76 06 ce 63 3e fl ¢l 34 ac 10
11 3¢ 22 ¢9 ¢0 de bd 1f b7 03 1f fe <¢O 92 350 10
00 fe b9 09 00 00

00 Oc 29 9d b4 1d 00 10 f3 2a 2a ac 08 00 45 00
00 28 79 0d 40 00 76 06 ce 50 3e fl ¢l 34 ac 10
11 3¢ 22 ¢9 ¢0 de bd 1f b7 03 1f fe <9 cc 50 10
01 02 af cc 00 00

The quantization is applied before the method, namely in
reoccurrance detection, as described in the foregoing.
The first frame values after quantization are as follows:

06
14
le
7f

14
3¢
11
5c

00 08 79 15
3b 03 67 31
Se 0f 5b 01

15 56 04 00 22 00
1If 78 60 la 56 08
of 7f 60 49 28 08

These values are delivered for the first frame, and they are
set as a previous buffer for prediction purposes of the next
frame.

The input data values for the second frame after quanti-
zation are as follows:

00 08 79 15
3b 03 67 28
Se 0f 5b 01

15 56 04 00 22 00
1If 78 60 la 56 08
of 7f 64 66 28 08

Now, the changed/unchanged bit stream can be generated
and it is as follows:

0000000000000000 0001000001000000
0000000000001100 011100

It contains 54 bits (7 ones and 47 zeros), and it can be
efficiently compressed later by an entropy encoder. For
example, RLE generates a stream of data 19, 1, 5, 1, 18, 2,
3, 3, 2, which can be delivered, for example, with nine five
bits values (=9*5 bits=45 bits). Range coding with prob-
abilities 0.13 and 0.87 is also useable for delivering the bits.

The seven changed values for the second frame are then
as follows:

06 28 64 66 01 57 66

These seven changed values are optionally compressed
with the first frame values (54), for example by using Range
coding. Without entropy encoding, they require 61%7
bits=428 bits. When the frames are decoded, then, after the
dequantization, the values for the two frames are as follows:

00 0Oc 28 9
00 28 78 fa

b4 1c 00 10 f2 2a
40 00 76 06 ce 62 3e

08 00 44 00
c0 34 ac 10

2a ac
fo

10

15

20

25

30

35

40

45

50

55

60

65

20
-continued
10 3¢ 22 8 ¢0 de bec le b6 02 le fe cO 92 50 10
00 fe b8 08 00 00
00 Oc 28 9¢c b4 1c 00 10 f2 2a 2a ac 08 00 44 00
00 28 78 Oc 40 00 76 06 ce 50 3e f0 0 34 ac 10
10 3¢ 22 8 ¢0 de bec le b6 02 le fe c® cc 50 10
01 02 ae cc 00 00

FIG. 3 is an illustration of steps of a method of encoding
input data (D1) to generate corresponding encoded data
(E2), in accordance with an embodiment of the present
disclosure. The method is depicted as a collection of steps in
a logical flow diagram, which represents a sequence of steps
that can be implemented in hardware, software, or a com-
bination thereof.

Optionally, at a step 302, substantial reoccurrences,
namely repetitions, of data blocks and/or data packets within
the input data (D1) are identified. Optionally, this step 302
is implemented with a deduplication method or with a block
encoder. Usually, the step 302 also includes an operation of
splitting the input data (D1) into new data blocks or data
packets. Alternatively, the data split has already been carried
out before the step 302. Beneficially, only partially changed
data blocks and/or data packets are delivered further to a step
304 for encoding, wherein the changed data blocks and/or
data packets or unchanged data blocks and/or data packets
are encoded with different methods, as aforementioned.
Optionally, the changed data blocks and/or data packets
and/or unchanged data blocks and/or data packets are also
delivered to the step 304 for encoding them.

It will be appreciated that, if a certain given reference data
block and/or data packet is used, then it does not cause extra
data to be transmitted. However, in some situations, the
information on the selection of the reference data block
and/or data packet needs to be transmitted so that the
decoder 112 will be aware of the reference data block and/or
data packet and use the same one. Correspondingly, when
partially changed data blocks and/or data packets are
encoded, then if a portion of the data blocks and/or data
packets are not given to the method, then the network
environment 100 needs to have some sort of method selec-
tion information available, which also needs to be delivered
to the decoder 112. Optionally, as mentioned above, it is a
block encoder or a deduplication algorithm that takes care of
delivering this piece of information, otherwise all data
blocks and/or data packets are processed with the method
pursuant to the disclosure.

At the step 304, it is identified where elements are
unchanged within the substantially reoccurring data blocks
and/or data packets, and/or where elements are changed
within the substantially reoccurring data blocks and/or data
packets.

Next, at a step 306, changed and unchanged elements are
encoded in the encoded data (E2) as one data stream.
Optionally, two data streams are processed, wherein one
data stream contains unchanged/changed decision bits and
the other data stream contains changed data values that are
to be used.

In accordance with the step 306, the unchanged elements
are encoded in the encoded data (E2) by employing at least
one corresponding symbol, or at least one corresponding bit,
for example a single bit, indicating an absence of change in
the unchanged elements relative to corresponding elements
in a reference data block and/or data packet. Optionally, the

US 9,859,920 B2

21

at least one corresponding symbol is represented by a
predetermined data value, which is optionally implemented
as a zero data value.

Optionally, for a lossless operation, the changed elements
are encoded in their original form in the encoded data (E2).
Alternatively, optionally, for a lossy operation, at least a
portion of the changed elements is encoded in a quantized
manner in the encoded data (E2). Yet alternatively, option-
ally, for a near-lossless operation, at least a portion of the
changed elements is encoded in a quantized manner in the
encoded data (E2).

The steps 304 and 306 are beneficially performed for
partially changed data blocks and/or data packets. Option-
ally, the steps 304 and 306 are performed for each data block
and/or data packet of the input data (D1). An encoding
processing of the steps 304 and 306 has been described in
conjunction with FIGS. 4A and 4B.

Optionally, the method includes an additional step 308 at
which a compression algorithm is applied to compress the
encoded data (E2) to generate compressed data (C4). The
compressed data (C4) is relatively small in size in compari-
son to the input data (D1); and therefore, requires a small
space for data storage and a small network bandwidth for
data transfer over a communication network or over a direct
connection. In the step 308, it is beneficial that typically
entropy encoding methods such as Range coding, SRLE,
EM, ODelta coding and so forth are used there. The step 308
is typically executed with a deduplication method or with a
block encoder.

It will be appreciated that compression is optional, but if
it is carried out, then either a certain compression method is
always used, or alternatively, information conveying the
selected compression method needs to be delivered from the
encoder 102 to the decoder 112. Typically, the selection of
compression method has been left as the responsibility of the
block encoder or the deduplication method, but if necessary,
the method pursuant to the present disclosure can express
and deliver the information conveying information regard-
ing the selected compression method, otherwise a certain
compression method is always used, for example a default
compression method.

Furthermore, the used reference data block and/or data
packet needs to be updated, or a new reference data block
and/or reference data packet needs to be generated. Such a
step is also typically implemented with a deduplication
method or with a block encoder, but optionally the update of
a reference data block and/or data packet is carried out with
the steps 304 and 306 for reducing the amount of data
copying.

Moreover, an amount of background memory allocated
for the encoding processing needs to be only as large as an
amount of elements in a current data block and/or data
packet, times the amount of different reference data blocks
and/or data packets. If only one reference data block and/or
data packet is used, then the amount of background memory
needed is the same as the size of the data block and/or
packet. Moreover, a result of the encoding processing,
namely, the encoded data (E2), is optionally written or
transmitted directly into an original memory. This means
that no separate transfer memories are required. Therefore,
the method is capable of functioning as an in-place (in situ)
operation, and is cost-effective.

The steps 302 to 308 are only illustrative and other
alternatives can also be provided where one or more steps
are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing
from the scope of the claims herein.

10

15

20

25

30

35

40

45

50

55

60

65

22

FIGS. 4A and 4B collectively are an illustration of steps
of the encoding processing, in accordance with an embodi-
ment of the present disclosure. At a step 402, the data block
and/or data packet is read, and the reference data block
and/or data packet is also read.

At a step 404, a data value of an element of a given data
block and/or data packet of the input data (D1) is read, and
a data value of an element of a given reference data block
and/or packet is also read.

Next, at a step 406, it is determined whether or not the
data value of the element has changed against a data value
of a corresponding element in a reference data block and/or
data packet. Beneficially, such determination detects that the
value has changed when the absolute difference between the
values is higher than the threshold value. Optionally, other
methods can be used for determining changes of data values.

If, at the step 406, it is determined that the data value of
the element has not changed, a step 408 is performed. At the
step 408, a predetermined data value is written to the
encoded data (E2) to indicate an absence of change, other-
wise a decision bit indicating that the data value of the
element has not changed is written to a separate stream.

However, if it is determined that the data value of the
element has changed, a step 410 is performed. At the step
410, the data value of the element is written to the encoded
data (E2) without or with optional quantization, and addi-
tionally, optionally a decision bit indicating that the data
value of the element has changed is written to a separate
stream. Optional quantization is also performed during the
reoccurrence detection.

Optionally, at the steps 406 and 408, the data value of the
element is also written to the new reference data block
and/or data packet. Alternatively, optionally, the changed
data value in the step 408 is updated also to the current
reference data block and/or packet by using the original
changed value with lossless processing and preferably
decoded changed value with lossy processing. Alternatively,
the reference values are generated or updated with a dedu-
plication method or with a block encoder. The updated
reference block and/or packet values are optionally used for
next data blocks and/or data packets.

Next, at a step 412, it is determined whether or not a next
element exists in the given data block and/or data packet. If
it is determined that a next element exists, the encoding
processing restarts at the step 404. Otherwise, if it is
determined that no next element exists in the given data
block and/or data packet, a step 414 is performed.

At the step 414, it is determined whether or not a next data
block and/or data packet exists in the input data (D1). If it
is determined that a next data block and/or data packet
exists, the encoding processing restarts at the step 402.
Otherwise, if it is determined that no next data block and/or
data packet exists in the input data (D1), the encoding
processing stops.

The steps 402 to 414 are only illustrative and other
alternatives can also be provided where one or more steps
are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing
from the scope of the claims herein.

Embodiments of the present disclosure provide a com-
puter program product comprising a non-transitory (namely
non-transient) computer-readable storage medium having
computer-readable instructions stored thereon, the com-
puter-readable instructions being executable by a comput-
erized device comprising processing hardware to execute the
method as described in conjunction with FIG. 3, and FIG.
4A to FIG. 4B. The computer-readable instructions are

US 9,859,920 B2

23

optionally downloadable from a software application store,
for example, from an “App store” to a computerized device.

FIG. 5 is an illustration of steps of a method of decoding
encoded data (E2) to generate corresponding decoded data
(D3), in accordance with an embodiment of the present
disclosure. The method is depicted as a collection of steps in
a logical flow diagram, which represents a sequence of steps
that can be implemented in hardware, software, or a com-
bination thereof.

Optionally, at a step 502, decoding of entropy-encoded
data streams from the compressed data (C4) to generate the
encoded data (E2) is applied. This step 502 optionally
typically employs entropy decoding methods such as Range
coding, SRLE, EM, ODelta coding and so forth. This step
502 is typically executed by employing a deduplication
method or by employing a block decoder.

At a step 504, the encoded data (E2) is searched to
identify changed and unchanged elements within substantial
reoccurrences of data blocks and/or data packets within the
encoded data (E2).

At a step 506, the encoded data (E2) is decoded to
generate data for changed and unchanged elements within
the substantial reoccurrences of data blocks and/or data
packets within the encoded data (E2). In accordance with the
step 504, occurrences of at least one corresponding symbol
or one corresponding bit indicative of an absence of change
are identified, and replaced with the corresponding symbol,
or set to the data value for position of the corresponding bit
with corresponding elements in a reference data block
and/or data packet. For changed blocks, the absence of
change is not detected, the encoded value is used. Option-
ally, for a lossless operation, the changed elements are
decoded to their original form in the decoded data (D3).
Alternatively, optionally, for a lossy operation, at least a
portion of the changed elements is decoded in a quantized
manner, namely dequantization is carried out, in the decoded
data (D3). Yet alternatively, optionally, for a near-lossless
operation, a part of the changed elements is decoded in a
quantized manner in the decoded data (D3).

The steps 504 and 506 are performed for partially
changed data blocks and/or data packets. Optionally, the
steps 504 and 506 are performed for each data block and/or
data packet of the encoded data (E2). A decoding processing
of the steps 504 and 506 has been described in conjunction
with FIGS. 6A and 6B.

Optionally, at a step 508, the data generated for the
changed and unchanged elements is assembled from the data
blocks and/or data packets to generate the decoded data
(D3). This step 508 typically employs a deduplication
method or a block decoder.

Moreover, the used reference data block and/or packet
needs to be updated or a new reference data block and/or
packet needs to be generated. Such a step is also typically
performed with a deduplication method or with a block
decoder, but optionally, the updating of reference data block
and/or data packet is optionally carried out within the steps
504 and 506 for reducing the amount of data copying
occurring during decoding operations.

The steps 502 to 508 are only illustrative and other
alternatives can also be provided where one or more steps
are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing
from the scope of the claims herein.

FIGS. 6A and 6B collectively are an illustration of steps
of the decoding processing, in accordance with an embodi-
ment of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

24

At a step 602, a stream of data values of a given data block
and/or data packet of the encoded data (E2) is received.
Optionally, the stream of bits describing unchanged/changed
elements in the data block and/or data packet is also
received. Also, the reference data block and/or data packet
is read during the step 602.

Next, at a step 604, an element of a given data block
and/or packet is read. Alternatively, the unchanged/changed
decision bit is read. An element of the reference data block
or packet is also read during the step 604.

Next, at a step 606, it is determined whether or not a given
element is unchanged. An unchanged element is detected if
a predetermined data value has occurred. Alternatively, an
unchanged element is detected, if the decision bit is
unchanged.

If, at the step 606, the unchanged element is detected, a
step 608 is performed. At the step 608, a data value of a
corresponding element in a reference data block and/or data
packet is written to the decoded data (D3).

Otherwise, if it is determined that the element has
changed, a step 610 is performed. At the step 610, the data
value of the element is written to the decoded data (D3)
without or with optional dequantization. If the detection of
changed value was made based on the changed bit in
decision bits, then the encoded value first needs to be read
at this step, before it can be written to the decoded data (D3).
Optional quantization can also be performed during the data
assembly.

Optionally, at the steps 608 and 610, the data value of the
element is also written to the new reference data block
and/or data packet. Alternatively, optionally, the changed
data value in the step 610 is also updated to the current
reference data block and/or data packet by using the decoded
changed value with lossless and lossy processing. Alterna-
tively, the reference values are generated or updated with a
deduplication method or with a block decoder, for example
as described in the foregoing. The updated reference data
block and/or data packet values is optionally used for next
data blocks and/or data packets.

Next, at a step 612, it is determined whether or not a next
element exists in the given data block and/or data packet. If
it is determined that a next element exists, the decoding
processing restarts at the step 604. Otherwise, if it is
determined that no next element exists in the given data
block and/or data packet, a step 614 is performed.

At the step 614, it is determined whether or not a next data
block and/or data packet exists in the encoded data (E2). If
it is determined that a next data block and/or data packet
exists, the decoding processing restarts at the step 602.
Otherwise, if it is determined that no next data block and/or
data packet exists in the encoded data (E2), the decoding
processing stops.

The steps 602 to 614 are only illustrative and other
alternatives can also be provided where one or more steps
are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing
from the scope of the claims herein.

Embodiments of the present disclosure provide a com-
puter program product comprising a non-transitory (namely
non-transient) computer-readable storage medium having
computer-readable instructions stored thereon, the com-
puter-readable instructions being executable by a comput-
erized device comprising processing hardware to execute the
method as described in conjunction with FIGS. 5, and FIGS.
6A to 6B. The computer-readable instructions are optionally
downloadable from a software application store, for

US 9,859,920 B2

25

example, from an “App store” to a computerized device,
such as the computerized device 114.

Furthermore, embodiments of the present disclosure pro-
vide a codec including at least one encoder as described in
conjunction with FIG. 3, and FIGS. 4A to 4B, and at least
one decoder as described in conjunction with FIG. 5 and
FIGS. 6A to 6B.

Embodiments of the present disclosure are susceptible to
being used for various purposes, including, though not
limited to, enabling lossless or near-lossless data compres-
sion of one-dimensional image data or multi-dimensional
image data, video data, audio data and any other type of data
with a high compression ratio, in comparison to conven-
tional codecs.

Modifications to embodiments of the present disclosure
described in the foregoing are possible without departing
from the scope of the present disclosure as defined by the
accompanying claims. Expressions such as “including”,
“comprising”, “incorporating”, “consisting of”, “have”, “is”
used to describe and claim the present disclosure are
intended to be construed in a non-exclusive manner, namely
allowing for items, components or elements not explicitly
described also to be present. Reference to the singular is also
to be construed to relate to the plural.

We claim:

1. An encoder including processing hardware for encod-
ing input data to generate corresponding encoded data,
wherein the processing hardware is operable to process the
input data as data blocks and/or data packets, characterized
in that the processing hardware is operable to:

(1) identify substantial reoccurrences of data blocks and/or
data packets within at least a portion of the input data,
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits;

(ii) identify where elements are unchanged within the
substantially reoccurring data blocks and/or data pack-
ets, and/or where elements are changed within the
substantially reoccurring data blocks and/or data pack-
ets;

(iii) encode unchanged elements in the encoded data by
employing at least one corresponding symbol or at least
one corresponding bit indicating an absence of change
in the unchanged eclements relative to corresponding
elements in a reference data block and/or data packet;
and

(iv) encode changed elements in the encoded data.

2. An encoder as claimed in claim 1, characterized in that
the input data is in a form of at least one of: text data, image
data, video data, audio data, binary data, sensor data, mea-
surement data, graphical data, multi-dimensional data, uni-
dimensional data.

3. An encoder as claimed in claim 1, characterized in that
the at least one corresponding symbol is represented by a
predetermined data value.

4. An encoder as claimed in claim 3, characterized in that
the predetermined data value is implemented as a zero data
value.

5. An encoder as claimed in claim 1, characterized in that
the processing hardware is operable to implement chunked
transfer encoding for Hypertext Transfer Protocol (HTTP)
and/or Real-Time Messaging Protocol (RTMP).

6. An encoder as claimed in claim 5, characterized in that
the HTTP and/or RTMP employ fixed-size data blocks
and/or data packets inside requests and responses.

10

20

25

30

35

40

45

50

55

60

65

26

7. An encoder as claimed in claim 1, characterized in that
the processing hardware is operable to encode at least a
portion of the changed elements in a quantized manner in the
encoded data.

8. An encoder as claimed in claim 1, characterized in that
the processing hardware is operable to apply a compression
algorithm to compress the encoded data.

9. A method of encoding input data to generate corre-
sponding encoded data, wherein the method includes pro-
cessing the input data as data blocks and/or data packets,
characterized in that the method includes:

identifying, by a processor, substantial reoccurrences of
data blocks and/or data packets within at least a portion
of the input data, wherein the data blocks and/or data
packets include a corresponding plurality of elements,
wherein the elements include a plurality of bits;

(ii) identifying, by the processor, in respect of individual
elements where elements are unchanged within the
substantially reoccurring data blocks and/or data pack-
ets, and/or where elements are changed within the
substantially reoccurring data blocks and/or data pack-
ets;

(ii1) encoding, by the processor, unchanged elements in
the encoded data by employing at least one correspond-
ing symbol or at least one corresponding bit indicating
an absence of change in the unchanged elements rela-
tive to corresponding elements in a reference data block
and/or data packet; and

(iv) encoding, by the processor, changed elements in the
encoded data.

10. A method as claimed in claim 9, characterized in that
the method includes encoding, by the processor, the input
data received in a form of at least one of: text data, image
data, video data, audio data, binary data, sensor data, mea-
surement data, graphical data, multi-dimensional data, uni-
dimensional data.

11. A method as claimed in claim 9, characterized in that
the method includes representing, by the processor, the at
least one corresponding symbol by a predetermined data
value.

12. A method as claimed in claim 11, characterized in that
the predetermined data value is implemented as a zero data
value.

13. A method as claimed in claim 9, characterized in that
the method includes implementing, by the processor,
chunked transfer encoding for Hypertext Transfer Protocol
(HTTP) and/or Real-Time Messaging Protocol (RTMP).

14. A method as claimed in claim 13, characterized in that
the HTTP and/or RTMP employ fixed-size data blocks
and/or data packets inside requests and responses.

15. A method as claimed in claim 9, characterized in that
the method includes encoding, by the processor, at least a
portion of the changed elements in a quantized manner in the
encoded data.

16. A method as claimed in claim 9, characterized in that
the method includes applying, by the processor, a compres-
sion algorithm to compress the encoded data to generate
corresponding compressed data.

17. A computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising the processor to execute a method as
claimed in claim 9.

18. A decoder including processing hardware for decod-
ing encoded data to generate corresponding decoded data,
wherein the processing hardware is operable to process the

US 9,859,920 B2

27

encoded data as data blocks and/or data packets, character-
ized in that the processing hardware is operable to:

(1) decode the encoded data to generate data for changed
elements, the changed elements being elements that are
changed within substantial reoccurrences of data
blocks and/or data packets within the encoded data;

(ii) decode the encoded data to generate data for
unchanged elements, the unchanged elements being
elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within
the encoded data, wherein the unchanged elements are
represented by at least one corresponding symbol or at
least one corresponding bit indicating an absence of
change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet; and

(iii) assemble the data generated for the changed and
unchanged elements in (i) and (ii) into data blocks
and/or data packets to generate the decoded data,
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits.

19. A decoder as claimed in claim 18, characterized in that
the decoded data is in a form of at least one of: text data,
image data, video data, audio data, binary data, sensor data,
measurement data, graphical data, multi-dimensional data,
uni-dimensional data.

20. A decoder as claimed in claim 18, characterized in that
the at least one corresponding symbol is represented by a
predetermined data value.

21. A decoder as claimed in claim 20, characterized in that
the predetermined data value is implemented as a zero data
value.

22. A decoder as claimed in claim 18, characterized in that
the processing hardware is operable to implement chunked
transfer encoding for Hypertext Transfer Protocol (HTTP)
and/or Real-Time Messaging Protocol (RTMP).

23. A decoder as claimed in claim 22, characterized in that
the HTTP and/or RTMP employ fixed-size data blocks
and/or data packets inside requests and responses.

24. A decoder as claimed in claim 18, characterized in that
the processing hardware is operable to decode at least a
portion of the changed elements in a quantized manner in the
decoded data.

25. A decoder as claimed in claim 18, characterized in that
the processing hardware is operable to apply a decompres-
sion algorithm to decompress compressed data to generate
the encoded data for decoding the encoded data to generate
the data for the changed and unchanged elements.

26. A method of decoding encoded data to generate
corresponding decoded data, wherein the method includes
processing the encoded data as data blocks and/or data
packets, characterized in that the method includes:

(1) decoding, by a processor, the encoded data to generate
data for changed elements, the changed elements being
elements that are changed within substantial reoccur-
rences of data blocks and/or data packets within the
encoded data;

(ii) decoding, by the processor, the encoded data to
generate data for unchanged elements, the unchanged
elements being elements that are unchanged within the
substantial reoccurrences of data blocks and/or data
packets within the encoded data, wherein the
unchanged elements are represented by at least one
corresponding symbol or at least one corresponding bit
indicating an absence of change in the unchanged

20

30

40

45

50

60

28

elements relative to corresponding elements in a refer-
ence data block and/or data packet; and

(ii1) assembling, by the processor, the data generated for
the changed and unchanged elements in steps (i) and
(ii) into data blocks and/or data packets to generate the
decoded data, wherein the data blocks and/or data
packets include a corresponding plurality of elements,
wherein the elements include a plurality of bits.

27. A method as claimed in claim 26, characterized in that
the method includes generating, by the processor, the
decoded data in a form of at least one of: text data, image
data, video data, audio data, binary data, sensor data, mea-
surement data, graphical data, multi-dimensional data, uni-
dimensional data.

28. A method as claimed in claim 26, characterized in that
the at least one corresponding symbol is represented by a
predetermined data value.

29. A method as claimed in claim 28, characterized in that
the predetermined data value is implemented as a zero data
value.

30. A method as claimed in claim 26, characterized in that
the method includes implementing, by the processor,
chunked transfer encoding for Hypertext Transfer Protocol
(HTTP) and/or Real-Time Messaging Protocol (RTMP).

31. A method as claimed in claim 30, characterized in that
the HTTP and/or RTMP employ fixed-size data blocks
and/or data packets inside requests and responses.

32. A method as claimed in claim 26, characterized in that
the method includes decoding, by the processor, at least a
portion of the changed elements in a quantized manner in the
decoded data.

33. A method as claimed in claim 26, characterized in that
the method includes applying, by the processor, a decom-
pression algorithm to decompress compressed data to gen-
erate the encoded data for decoding the encoded data to
generate the data for the changed and unchanged elements.

34. A computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable instructions stored thereon, the computer-
readable instructions being executable by a computerized
device comprising processing hardware to execute a method
of decoding encoded data to generate corresponding
decoded data, wherein the method includes processing the
encoded data as data blocks and/or data packets, character-
ized in that the method includes:

(1) decoding the encoded data to generate data for changed
elements, the changed elements being elements that are
changed within substantial reoccurrences of data
blocks and/or data packets within the encoded data;

(i) decoding the encoded data to generate data for
unchanged elements, the unchanged elements being
elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within
the encoded data, wherein the unchanged elements are
represented by at least one corresponding symbol or at
least one corresponding bit indicating an absence of
change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet; and

(ii1) assembling the data generated for the changed and
unchanged elements in steps (i) and (ii) into data blocks
and/or data packets to generate the decoded data,
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits.

35. A codec including at least one encoder including

processing hardware for encoding input data to generate

US 9,859,920 B2

29

corresponding encoded data, wherein the processing hard-
ware is operable to process the input data as data blocks
and/or data packets, characterized in that the processing
hardware is operable to:

(1) identify substantial reoccurrences of data blocks and/or
data packets within at least a portion of the input data,
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits;

(ii) identify where elements are unchanged within the
substantially reoccurring data blocks and/or data pack-
ets, and/or where elements are changed within the
substantially reoccurring data blocks and/or data pack-
ets;

(iii) encode unchanged elements in the encoded data by
employing at least one corresponding symbol or at least
one corresponding bit indicating an absence of change
in the unchanged eclements relative to corresponding
elements in a reference data block and/or data packet;
and

(iv) encode changed elements in the encoded data; and at
least one decoder including processing hardware for
decoding encoded data to generate corresponding
decoded data, wherein the processing hardware is oper-

10

15

20

30

able to process the encoded data as data blocks and/or
data packets, characterized in that the processing hard-
ware is operable to:

(1) decode the encoded data to generate data for changed

elements, the changed elements being elements that are
changed within substantial reoccurrences of data
blocks and/or data packets within the encoded data;

(i) decode the encoded data to generate data for

unchanged elements, the unchanged elements being
elements that are unchanged within the substantial
reoccurrences of data blocks and/or data packets within
the encoded data, wherein the unchanged elements are
represented by at least one corresponding symbol or at
least one corresponding bit indicating an absence of
change in the unchanged elements relative to corre-
sponding elements in a reference data block and/or data
packet; and

(ii1) assemble the data generated for the changed and

unchanged elements in (i) and (ii) into data blocks
and/or data packets to generate the decoded data,
wherein the data blocks and/or data packets include a
corresponding plurality of elements, wherein the ele-
ments include a plurality of bits.

#* #* #* #* #*

